M G Rambotti, G Mariucci, M Tantucci, M V Ambrosini
{"title":"一氧化氮释放阿司匹林衍生物NCX4016在大鼠主动脉中激活可溶性鸟苷酸环化酶的超细胞化学证明。","authors":"M G Rambotti, G Mariucci, M Tantucci, M V Ambrosini","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Biochemical studies demonstrate that the NO-releasing-aspirin derivative (NCX4016) stimulates soluble guanylate cyclase (sGC) activity and increases cyclic GMP (cGMP) in human platelet and monocytes by releasing NO. In the present study, an ultracytochemical technique for electron microscopy was used to investigate the effects of NCX4016 (2 mM) on sGC activity in rat thoracic aorta, using sodium nitroprusside (0.01 mM) as reference NO-donor. Guanylyl-imidodiphosphate sodium salt [Gpp(NH)p], a synthetic non-hydrolyzable analogue of GTP, was used as sGC substrate. NO-activated sGC released imidodiphosphate ions which were precipitated with lead ions, giving rise to deposits of electron-dense granules (reaction product). Ultracytochemistry allowed us to demonstrate that NCX4016 stimulated sGC activity in smooth muscle cells, and particularly in vascular endothelial cells, as sodium nitroprusside did. This result could explain the protective effects of chronic treatment with NCX4016 on aortic endothelium of diabetic rats demonstrated by scanning and transmission electron microscopy.</p>","PeriodicalId":17136,"journal":{"name":"Journal of submicroscopic cytology and pathology","volume":"38 2-3","pages":"149-54"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultracytochemical demonstration of soluble guanylate cyclase activation in rat aorta by NCX4016, a NO-releasing aspirin derivative.\",\"authors\":\"M G Rambotti, G Mariucci, M Tantucci, M V Ambrosini\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biochemical studies demonstrate that the NO-releasing-aspirin derivative (NCX4016) stimulates soluble guanylate cyclase (sGC) activity and increases cyclic GMP (cGMP) in human platelet and monocytes by releasing NO. In the present study, an ultracytochemical technique for electron microscopy was used to investigate the effects of NCX4016 (2 mM) on sGC activity in rat thoracic aorta, using sodium nitroprusside (0.01 mM) as reference NO-donor. Guanylyl-imidodiphosphate sodium salt [Gpp(NH)p], a synthetic non-hydrolyzable analogue of GTP, was used as sGC substrate. NO-activated sGC released imidodiphosphate ions which were precipitated with lead ions, giving rise to deposits of electron-dense granules (reaction product). Ultracytochemistry allowed us to demonstrate that NCX4016 stimulated sGC activity in smooth muscle cells, and particularly in vascular endothelial cells, as sodium nitroprusside did. This result could explain the protective effects of chronic treatment with NCX4016 on aortic endothelium of diabetic rats demonstrated by scanning and transmission electron microscopy.</p>\",\"PeriodicalId\":17136,\"journal\":{\"name\":\"Journal of submicroscopic cytology and pathology\",\"volume\":\"38 2-3\",\"pages\":\"149-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of submicroscopic cytology and pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of submicroscopic cytology and pathology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultracytochemical demonstration of soluble guanylate cyclase activation in rat aorta by NCX4016, a NO-releasing aspirin derivative.
Biochemical studies demonstrate that the NO-releasing-aspirin derivative (NCX4016) stimulates soluble guanylate cyclase (sGC) activity and increases cyclic GMP (cGMP) in human platelet and monocytes by releasing NO. In the present study, an ultracytochemical technique for electron microscopy was used to investigate the effects of NCX4016 (2 mM) on sGC activity in rat thoracic aorta, using sodium nitroprusside (0.01 mM) as reference NO-donor. Guanylyl-imidodiphosphate sodium salt [Gpp(NH)p], a synthetic non-hydrolyzable analogue of GTP, was used as sGC substrate. NO-activated sGC released imidodiphosphate ions which were precipitated with lead ions, giving rise to deposits of electron-dense granules (reaction product). Ultracytochemistry allowed us to demonstrate that NCX4016 stimulated sGC activity in smooth muscle cells, and particularly in vascular endothelial cells, as sodium nitroprusside did. This result could explain the protective effects of chronic treatment with NCX4016 on aortic endothelium of diabetic rats demonstrated by scanning and transmission electron microscopy.