Martin Wurm, Verena Lubei, Marco Caronna, Martin Hermann, Raimund Margreiter, Paul Hengster
{"title":"新型灌注旋转细胞培养系统的研制。","authors":"Martin Wurm, Verena Lubei, Marco Caronna, Martin Hermann, Raimund Margreiter, Paul Hengster","doi":"10.1089/ten.2007.0082","DOIUrl":null,"url":null,"abstract":"<p><p>A rotary cell culture system has been established. System quality was determined by observing the stability of the basic parameters of temperature, gas exchange, and pH, and mass transfer (time to equimolarity) between the medium circuit and the 2 cell-containing chambers was investigated. Mass transfer time for urea and several ions was approximately 30 min for the high-fiber-density chamber (HFC) and 50 min for the low-fiber-density chamber (LFC). Exchange of albumin was delayed in both chambers, highlighting the dependence of mass transfer on area of exchange and molecule size. Finally, the ability for cell growth and maintenance was tested. Densities of up to 1.2 x 10(7) immortalized cells per mL at a viability of up to 85% were obtained after 1 week of continuous, non-interfering culture of immortalized cells in the HFC. Human pancreatic islets were also cultivated in the LFC. Confocal analysis using fluorescent dyes showed that the 3-dimensional islet structure was maintained for 1 week. Promising results were obtained, which will further our ongoing efforts toward establishing a mobile cell culture system.</p>","PeriodicalId":23102,"journal":{"name":"Tissue engineering","volume":"13 11","pages":"2761-8"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/ten.2007.0082","citationCount":"12","resultStr":"{\"title\":\"Development of a novel perfused rotary cell culture system.\",\"authors\":\"Martin Wurm, Verena Lubei, Marco Caronna, Martin Hermann, Raimund Margreiter, Paul Hengster\",\"doi\":\"10.1089/ten.2007.0082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A rotary cell culture system has been established. System quality was determined by observing the stability of the basic parameters of temperature, gas exchange, and pH, and mass transfer (time to equimolarity) between the medium circuit and the 2 cell-containing chambers was investigated. Mass transfer time for urea and several ions was approximately 30 min for the high-fiber-density chamber (HFC) and 50 min for the low-fiber-density chamber (LFC). Exchange of albumin was delayed in both chambers, highlighting the dependence of mass transfer on area of exchange and molecule size. Finally, the ability for cell growth and maintenance was tested. Densities of up to 1.2 x 10(7) immortalized cells per mL at a viability of up to 85% were obtained after 1 week of continuous, non-interfering culture of immortalized cells in the HFC. Human pancreatic islets were also cultivated in the LFC. Confocal analysis using fluorescent dyes showed that the 3-dimensional islet structure was maintained for 1 week. Promising results were obtained, which will further our ongoing efforts toward establishing a mobile cell culture system.</p>\",\"PeriodicalId\":23102,\"journal\":{\"name\":\"Tissue engineering\",\"volume\":\"13 11\",\"pages\":\"2761-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/ten.2007.0082\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.2007.0082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/ten.2007.0082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a novel perfused rotary cell culture system.
A rotary cell culture system has been established. System quality was determined by observing the stability of the basic parameters of temperature, gas exchange, and pH, and mass transfer (time to equimolarity) between the medium circuit and the 2 cell-containing chambers was investigated. Mass transfer time for urea and several ions was approximately 30 min for the high-fiber-density chamber (HFC) and 50 min for the low-fiber-density chamber (LFC). Exchange of albumin was delayed in both chambers, highlighting the dependence of mass transfer on area of exchange and molecule size. Finally, the ability for cell growth and maintenance was tested. Densities of up to 1.2 x 10(7) immortalized cells per mL at a viability of up to 85% were obtained after 1 week of continuous, non-interfering culture of immortalized cells in the HFC. Human pancreatic islets were also cultivated in the LFC. Confocal analysis using fluorescent dyes showed that the 3-dimensional islet structure was maintained for 1 week. Promising results were obtained, which will further our ongoing efforts toward establishing a mobile cell culture system.