Shaun M Kunisaki, Julie R Fuchs, Shaun A Steigman, Dario O Fauza
{"title":"不同围产期间充质祖细胞工程化软骨的比较分析。","authors":"Shaun M Kunisaki, Julie R Fuchs, Shaun A Steigman, Dario O Fauza","doi":"10.1089/ten.2006.0407","DOIUrl":null,"url":null,"abstract":"We sought to compare engineered cartilaginous constructs derived from different perinatal mesenchymal progenitor cell (MPC) sources. Ovine MPCs isolated from amniotic fluid (AF, n = 8), neonatal bone marrow (BM, n = 6), and preterm umbilical cord blood (CB, n = 12) were expanded and comparably seeded onto synthetic scaffolds. Constructs were maintained in chondrogenic media containing transforming growth factor-beta. After 12-15 weeks, specimens were compared with native fetal hyaline and elastic cartilage by gross inspection, histology, immunohistochemistry, and quantitative extracellular matrix (ECM) assays. MPCs from AF proliferated significantly faster ex vivo when compared to MPCs from the other sources. Chondrogenic differentiation was evident in all groups, as shown by toluidine blue staining and expression of aggrecan, cartilage proteoglycan link protein, and collagen type II. Quantitatively, all engineered specimens had significantly lower levels of glycosaminoglycans than native hyaline cartilage. Elastin levels in AF-based constructs (156.0 +/- 120.4 microg/mg) were comparable to that of native elastic cartilage (235.8 +/- 54.2 microg/mg), both of which were significantly higher than in BM- and CB-based specimens. We conclude that the ECM profile of cartilage engineered from perinatal MPCs is highly dependent on cell source. ECM peculiarities should be considered when designing the optimal cartilaginous bioprosthesis for use in perinatal surgical reconstruction.","PeriodicalId":23102,"journal":{"name":"Tissue engineering","volume":"13 11","pages":"2633-44"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/ten.2006.0407","citationCount":"78","resultStr":"{\"title\":\"A comparative analysis of cartilage engineered from different perinatal mesenchymal progenitor cells.\",\"authors\":\"Shaun M Kunisaki, Julie R Fuchs, Shaun A Steigman, Dario O Fauza\",\"doi\":\"10.1089/ten.2006.0407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We sought to compare engineered cartilaginous constructs derived from different perinatal mesenchymal progenitor cell (MPC) sources. Ovine MPCs isolated from amniotic fluid (AF, n = 8), neonatal bone marrow (BM, n = 6), and preterm umbilical cord blood (CB, n = 12) were expanded and comparably seeded onto synthetic scaffolds. Constructs were maintained in chondrogenic media containing transforming growth factor-beta. After 12-15 weeks, specimens were compared with native fetal hyaline and elastic cartilage by gross inspection, histology, immunohistochemistry, and quantitative extracellular matrix (ECM) assays. MPCs from AF proliferated significantly faster ex vivo when compared to MPCs from the other sources. Chondrogenic differentiation was evident in all groups, as shown by toluidine blue staining and expression of aggrecan, cartilage proteoglycan link protein, and collagen type II. Quantitatively, all engineered specimens had significantly lower levels of glycosaminoglycans than native hyaline cartilage. Elastin levels in AF-based constructs (156.0 +/- 120.4 microg/mg) were comparable to that of native elastic cartilage (235.8 +/- 54.2 microg/mg), both of which were significantly higher than in BM- and CB-based specimens. We conclude that the ECM profile of cartilage engineered from perinatal MPCs is highly dependent on cell source. ECM peculiarities should be considered when designing the optimal cartilaginous bioprosthesis for use in perinatal surgical reconstruction.\",\"PeriodicalId\":23102,\"journal\":{\"name\":\"Tissue engineering\",\"volume\":\"13 11\",\"pages\":\"2633-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/ten.2006.0407\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.2006.0407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/ten.2006.0407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78
摘要
我们试图比较来自不同围产期间充质祖细胞(MPC)来源的工程软骨结构。将从羊水(AF, n = 8)、新生儿骨髓(BM, n = 6)和早产儿脐带血(CB, n = 12)中分离的绵羊MPCs扩增并播种到合成支架上。构建体在含有转化生长因子- β的软骨培养基中维持。12-15周后,通过大体检查、组织学、免疫组织化学和细胞外基质(ECM)定量分析,将标本与天然胎透明软骨和弹性软骨进行比较。与其他来源的MPCs相比,AF的MPCs在体外增殖明显更快。通过甲苯胺蓝染色和聚集蛋白、软骨蛋白聚糖连接蛋白和II型胶原蛋白的表达,所有组的软骨分化都很明显。在数量上,所有工程标本的糖胺聚糖水平明显低于天然透明软骨。af构建的弹性蛋白水平(156.0 +/- 120.4 μ g/mg)与天然弹性软骨(235.8 +/- 54.2 μ g/mg)相当,两者均显著高于BM和cb构建的标本。我们得出结论,围产期MPCs工程软骨的ECM特征高度依赖于细胞来源。在设计用于围产期手术重建的最佳软骨生物假体时,应考虑ECM的特性。
A comparative analysis of cartilage engineered from different perinatal mesenchymal progenitor cells.
We sought to compare engineered cartilaginous constructs derived from different perinatal mesenchymal progenitor cell (MPC) sources. Ovine MPCs isolated from amniotic fluid (AF, n = 8), neonatal bone marrow (BM, n = 6), and preterm umbilical cord blood (CB, n = 12) were expanded and comparably seeded onto synthetic scaffolds. Constructs were maintained in chondrogenic media containing transforming growth factor-beta. After 12-15 weeks, specimens were compared with native fetal hyaline and elastic cartilage by gross inspection, histology, immunohistochemistry, and quantitative extracellular matrix (ECM) assays. MPCs from AF proliferated significantly faster ex vivo when compared to MPCs from the other sources. Chondrogenic differentiation was evident in all groups, as shown by toluidine blue staining and expression of aggrecan, cartilage proteoglycan link protein, and collagen type II. Quantitatively, all engineered specimens had significantly lower levels of glycosaminoglycans than native hyaline cartilage. Elastin levels in AF-based constructs (156.0 +/- 120.4 microg/mg) were comparable to that of native elastic cartilage (235.8 +/- 54.2 microg/mg), both of which were significantly higher than in BM- and CB-based specimens. We conclude that the ECM profile of cartilage engineered from perinatal MPCs is highly dependent on cell source. ECM peculiarities should be considered when designing the optimal cartilaginous bioprosthesis for use in perinatal surgical reconstruction.