Sabine Fuchs, Alexander Hofmann, C James Kirkpatrick
{"title":"人外周血内皮细胞与成骨细胞系在二维和三维共培养中的微血管样结构。","authors":"Sabine Fuchs, Alexander Hofmann, C James Kirkpatrick","doi":"10.1089/ten.2007.0022","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue regeneration involves complex processes in the interaction between different cell types that control the process of neo-vascularization. In bone, osteoblasts and bone marrow stem cells provide cue elements for the proliferation of endothelial cells, differentiation of endothelial precursors, and the maturation of a vascular network. In this study, we investigated outgrowth endothelial cells (OECs), a potential source of autologous endothelial cells derived from human peripheral blood, in direct 2-dimensional (2-D) and 3-D co-culture systems with cells relevant for the regeneration of bone tissue, such as osteoblasts. In the co-cultures, OECs were evaluated in terms of their stability as an endothelial population at the single cell level using flow cytometry and their ability to establish a pre-vascular network at the light-microscopical and ultra-structural level. In co-cultures with the osteoblast cell line MG63 and with human primary osteoblasts (pOBs), OECs, in contrast to human umbilical vein endothelial cells, formed highly organized microvessel-like structures. These microvessel-like structures included the formation of a vascular lumen with tight junctional complexes at intercellular contacts of endothelial cells. In the co-culture, the formation of this vascular network was achieved in the standard growth medium for OECs. Furthermore, using a rotating culture vessel system, 3-D co-cultures consisting of OECs and pOBs were generated. Based on these observations, we conclude that OECs could provide a valuable source of autologous endothelial cells for the generation of complex tissue-engineered tissues.</p>","PeriodicalId":23102,"journal":{"name":"Tissue engineering","volume":"13 10","pages":"2577-88"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/ten.2007.0022","citationCount":"166","resultStr":"{\"title\":\"Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells.\",\"authors\":\"Sabine Fuchs, Alexander Hofmann, C James Kirkpatrick\",\"doi\":\"10.1089/ten.2007.0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tissue regeneration involves complex processes in the interaction between different cell types that control the process of neo-vascularization. In bone, osteoblasts and bone marrow stem cells provide cue elements for the proliferation of endothelial cells, differentiation of endothelial precursors, and the maturation of a vascular network. In this study, we investigated outgrowth endothelial cells (OECs), a potential source of autologous endothelial cells derived from human peripheral blood, in direct 2-dimensional (2-D) and 3-D co-culture systems with cells relevant for the regeneration of bone tissue, such as osteoblasts. In the co-cultures, OECs were evaluated in terms of their stability as an endothelial population at the single cell level using flow cytometry and their ability to establish a pre-vascular network at the light-microscopical and ultra-structural level. In co-cultures with the osteoblast cell line MG63 and with human primary osteoblasts (pOBs), OECs, in contrast to human umbilical vein endothelial cells, formed highly organized microvessel-like structures. These microvessel-like structures included the formation of a vascular lumen with tight junctional complexes at intercellular contacts of endothelial cells. In the co-culture, the formation of this vascular network was achieved in the standard growth medium for OECs. Furthermore, using a rotating culture vessel system, 3-D co-cultures consisting of OECs and pOBs were generated. Based on these observations, we conclude that OECs could provide a valuable source of autologous endothelial cells for the generation of complex tissue-engineered tissues.</p>\",\"PeriodicalId\":23102,\"journal\":{\"name\":\"Tissue engineering\",\"volume\":\"13 10\",\"pages\":\"2577-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/ten.2007.0022\",\"citationCount\":\"166\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.2007.0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/ten.2007.0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells.
Tissue regeneration involves complex processes in the interaction between different cell types that control the process of neo-vascularization. In bone, osteoblasts and bone marrow stem cells provide cue elements for the proliferation of endothelial cells, differentiation of endothelial precursors, and the maturation of a vascular network. In this study, we investigated outgrowth endothelial cells (OECs), a potential source of autologous endothelial cells derived from human peripheral blood, in direct 2-dimensional (2-D) and 3-D co-culture systems with cells relevant for the regeneration of bone tissue, such as osteoblasts. In the co-cultures, OECs were evaluated in terms of their stability as an endothelial population at the single cell level using flow cytometry and their ability to establish a pre-vascular network at the light-microscopical and ultra-structural level. In co-cultures with the osteoblast cell line MG63 and with human primary osteoblasts (pOBs), OECs, in contrast to human umbilical vein endothelial cells, formed highly organized microvessel-like structures. These microvessel-like structures included the formation of a vascular lumen with tight junctional complexes at intercellular contacts of endothelial cells. In the co-culture, the formation of this vascular network was achieved in the standard growth medium for OECs. Furthermore, using a rotating culture vessel system, 3-D co-cultures consisting of OECs and pOBs were generated. Based on these observations, we conclude that OECs could provide a valuable source of autologous endothelial cells for the generation of complex tissue-engineered tissues.