Filip Stillaert, Michael Findlay, Jason Palmer, Rejhan Idrizi, Shirley Cheang, Aurora Messina, Keren Abberton, Wayne Morrison, Erik W Thompson
{"title":"在小鼠组织工程室中基质诱导脂肪组织的宿主而非移植物来源。","authors":"Filip Stillaert, Michael Findlay, Jason Palmer, Rejhan Idrizi, Shirley Cheang, Aurora Messina, Keren Abberton, Wayne Morrison, Erik W Thompson","doi":"10.1089/ten.2006.0382","DOIUrl":null,"url":null,"abstract":"<p><p>We have recently shown that Matrigel-filled chambers containing fibroblast growth factor-2 (FGF2) and placed around an epigastric pedicle in the mouse were highly adipogenic. Contact of this construct with pre-existing tissue or a free adipose graft was required. To further investigate the mechanisms underpinning formation of new adipose tissue, we seeded these chambers with human adipose biopsies and human adipose-derived cell populations in severe combined immunodeficient mice and assessed the origin of the resultant adipose tissue after 6 weeks using species-specific probes. The tissues were negative for human-specific vimentin labeling, suggesting that the fat originates from the murine host rather than the human graft. This was supported by the strong presence of mouse-specific Cot-1 deoxyribonucleic acid labeling, and the absence of human Cot-1 labeling in the new fat. Even chambers seeded with FGF2/Matrigel containing cultured human stromal-vascular fraction (SVF) labeled strongly only for human vimentin in cells that did not have a mature adipocyte phenotype; the newly formed fat tissue was negative for human vimentin. These findings indicate that grafts placed in the chamber have an inductive function for neo-adipogenesis, rather than supplying adipocyte-precursor cells to generate the new fat tissue, and preliminary observations implicate the SVF in producing inductive factors. This surprising finding opens the door for refinement of current adipose tissue-engineering approaches.</p>","PeriodicalId":23102,"journal":{"name":"Tissue engineering","volume":"13 9","pages":"2291-300"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/ten.2006.0382","citationCount":"93","resultStr":"{\"title\":\"Host rather than graft origin of Matrigel-induced adipose tissue in the murine tissue-engineering chamber.\",\"authors\":\"Filip Stillaert, Michael Findlay, Jason Palmer, Rejhan Idrizi, Shirley Cheang, Aurora Messina, Keren Abberton, Wayne Morrison, Erik W Thompson\",\"doi\":\"10.1089/ten.2006.0382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have recently shown that Matrigel-filled chambers containing fibroblast growth factor-2 (FGF2) and placed around an epigastric pedicle in the mouse were highly adipogenic. Contact of this construct with pre-existing tissue or a free adipose graft was required. To further investigate the mechanisms underpinning formation of new adipose tissue, we seeded these chambers with human adipose biopsies and human adipose-derived cell populations in severe combined immunodeficient mice and assessed the origin of the resultant adipose tissue after 6 weeks using species-specific probes. The tissues were negative for human-specific vimentin labeling, suggesting that the fat originates from the murine host rather than the human graft. This was supported by the strong presence of mouse-specific Cot-1 deoxyribonucleic acid labeling, and the absence of human Cot-1 labeling in the new fat. Even chambers seeded with FGF2/Matrigel containing cultured human stromal-vascular fraction (SVF) labeled strongly only for human vimentin in cells that did not have a mature adipocyte phenotype; the newly formed fat tissue was negative for human vimentin. These findings indicate that grafts placed in the chamber have an inductive function for neo-adipogenesis, rather than supplying adipocyte-precursor cells to generate the new fat tissue, and preliminary observations implicate the SVF in producing inductive factors. This surprising finding opens the door for refinement of current adipose tissue-engineering approaches.</p>\",\"PeriodicalId\":23102,\"journal\":{\"name\":\"Tissue engineering\",\"volume\":\"13 9\",\"pages\":\"2291-300\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/ten.2006.0382\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.2006.0382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/ten.2006.0382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Host rather than graft origin of Matrigel-induced adipose tissue in the murine tissue-engineering chamber.
We have recently shown that Matrigel-filled chambers containing fibroblast growth factor-2 (FGF2) and placed around an epigastric pedicle in the mouse were highly adipogenic. Contact of this construct with pre-existing tissue or a free adipose graft was required. To further investigate the mechanisms underpinning formation of new adipose tissue, we seeded these chambers with human adipose biopsies and human adipose-derived cell populations in severe combined immunodeficient mice and assessed the origin of the resultant adipose tissue after 6 weeks using species-specific probes. The tissues were negative for human-specific vimentin labeling, suggesting that the fat originates from the murine host rather than the human graft. This was supported by the strong presence of mouse-specific Cot-1 deoxyribonucleic acid labeling, and the absence of human Cot-1 labeling in the new fat. Even chambers seeded with FGF2/Matrigel containing cultured human stromal-vascular fraction (SVF) labeled strongly only for human vimentin in cells that did not have a mature adipocyte phenotype; the newly formed fat tissue was negative for human vimentin. These findings indicate that grafts placed in the chamber have an inductive function for neo-adipogenesis, rather than supplying adipocyte-precursor cells to generate the new fat tissue, and preliminary observations implicate the SVF in producing inductive factors. This surprising finding opens the door for refinement of current adipose tissue-engineering approaches.