评估牛共培养,无支架方法生长半月板形状结构。

Adam C Aufderheide, Kyriacos A Athanasiou
{"title":"评估牛共培养,无支架方法生长半月板形状结构。","authors":"Adam C Aufderheide,&nbsp;Kyriacos A Athanasiou","doi":"10.1089/ten.2006.0291","DOIUrl":null,"url":null,"abstract":"<p><p>Using a self-assembly (SA), scaffoldless method, five high-density co-cultures with varied ratios of meniscal fibrochondrocytes (MFCs) and articular chondrocytes (ACs) were seeded into novel meniscus-specific, ring-shaped agarose wells. The following ratios of MFCs to ACs were used: 0% MFC, 25% MFC, 50% MFC, 75% MFC, and 100% MFC. Over 4 weeks, all ratios of cells self-assembled into three-dimensional constructs with varying mechanobiological and morphological properties. All groups stained for collagen II (Col II), and all groups except the 0% MFC group stained for collagen I (Col I). It was found that the tensile modulus was proportional to the percentage of MFCs employed. The 100% MFC group yielded the greatest mechanical stiffness with 432.2 +/- 47 kPa tensile modulus and an ultimate tensile strength of 23.7 +/- 2.4 kPa. On gross inspection, the 50% MFC constructs were the most similar to our idealized meniscus shape, our primary criterion. A second experiment was performed to examine the anisotropy of constructs as well as to directly compare the scaffoldless, SA method with a poly-glycolic acid (PGA) scaffold-based construct. When compared to PGA constructs, the SA groups were 2-4 times stiffer and stronger in tension. Further, at 8 weeks, SA groups exhibited circumferential fiber bundles similar to native tissue. When pulled in the circumferential direction, the SA group had significantly higher tensile modulus (226 +/- 76 kPa) than when pulled in the radial direction (67 +/- 32 kPa). The PGA constructs had neither a directional collagen fiber orientation nor differences in mechanical properties in the radial or circumferential direction. It is suggested that the geometric constraint imposed by the ring-shaped, nonadhesive mold guides collagen fibril directionality and, thus, alters mechanical properties. Co-culturing ACs and MFCs in this manner appears to be a promising new method for tissue engineering fibrocartilaginous tissues exhibiting a spectrum of mechanical and biomechanical properties.</p>","PeriodicalId":23102,"journal":{"name":"Tissue engineering","volume":"13 9","pages":"2195-205"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/ten.2006.0291","citationCount":"113","resultStr":"{\"title\":\"Assessment of a bovine co-culture, scaffold-free method for growing meniscus-shaped constructs.\",\"authors\":\"Adam C Aufderheide,&nbsp;Kyriacos A Athanasiou\",\"doi\":\"10.1089/ten.2006.0291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Using a self-assembly (SA), scaffoldless method, five high-density co-cultures with varied ratios of meniscal fibrochondrocytes (MFCs) and articular chondrocytes (ACs) were seeded into novel meniscus-specific, ring-shaped agarose wells. The following ratios of MFCs to ACs were used: 0% MFC, 25% MFC, 50% MFC, 75% MFC, and 100% MFC. Over 4 weeks, all ratios of cells self-assembled into three-dimensional constructs with varying mechanobiological and morphological properties. All groups stained for collagen II (Col II), and all groups except the 0% MFC group stained for collagen I (Col I). It was found that the tensile modulus was proportional to the percentage of MFCs employed. The 100% MFC group yielded the greatest mechanical stiffness with 432.2 +/- 47 kPa tensile modulus and an ultimate tensile strength of 23.7 +/- 2.4 kPa. On gross inspection, the 50% MFC constructs were the most similar to our idealized meniscus shape, our primary criterion. A second experiment was performed to examine the anisotropy of constructs as well as to directly compare the scaffoldless, SA method with a poly-glycolic acid (PGA) scaffold-based construct. When compared to PGA constructs, the SA groups were 2-4 times stiffer and stronger in tension. Further, at 8 weeks, SA groups exhibited circumferential fiber bundles similar to native tissue. When pulled in the circumferential direction, the SA group had significantly higher tensile modulus (226 +/- 76 kPa) than when pulled in the radial direction (67 +/- 32 kPa). The PGA constructs had neither a directional collagen fiber orientation nor differences in mechanical properties in the radial or circumferential direction. It is suggested that the geometric constraint imposed by the ring-shaped, nonadhesive mold guides collagen fibril directionality and, thus, alters mechanical properties. Co-culturing ACs and MFCs in this manner appears to be a promising new method for tissue engineering fibrocartilaginous tissues exhibiting a spectrum of mechanical and biomechanical properties.</p>\",\"PeriodicalId\":23102,\"journal\":{\"name\":\"Tissue engineering\",\"volume\":\"13 9\",\"pages\":\"2195-205\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/ten.2006.0291\",\"citationCount\":\"113\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.2006.0291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/ten.2006.0291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 113

摘要

采用自组装(SA),无支架的方法,5个具有不同比例的半月板纤维软骨细胞(mfc)和关节软骨细胞(ACs)的高密度共培养物被播种到新的半月板特异性环状琼脂糖孔中。MFC与ac的比例如下:0% MFC、25% MFC、50% MFC、75% MFC和100% MFC。4周后,所有比例的细胞自组装成具有不同机械生物学和形态特性的三维结构。所有组均染色胶原II (Col II),除0% MFC组外,所有组均染色胶原I (Col I)。我们发现拉伸模量与使用的MFC百分比成正比。100% MFC组的力学刚度最大,拉伸模量为432.2 +/- 47 kPa,极限抗拉强度为23.7 +/- 2.4 kPa。在大体检查中,50%的MFC结构与我们的理想半月板形状最相似,这是我们的主要标准。第二个实验是为了检验构建体的各向异性,并直接比较无支架的SA方法与基于聚乙醇酸(PGA)支架的构建体。与PGA结构相比,SA组的硬度和张力增加了2-4倍。此外,在8周时,SA组表现出与天然组织相似的周向纤维束。周向拉伸时,SA组的拉伸模量(226 +/- 76 kPa)明显高于径向拉伸组(67 +/- 32 kPa)。PGA结构既没有胶原纤维定向,也没有径向或周向力学性能的差异。这表明,环形非粘性模具所施加的几何约束引导了胶原纤维的方向性,从而改变了其力学性能。以这种方式共培养ACs和mfc似乎是一种很有前途的组织工程纤维软骨组织的新方法,具有一系列的力学和生物力学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of a bovine co-culture, scaffold-free method for growing meniscus-shaped constructs.

Using a self-assembly (SA), scaffoldless method, five high-density co-cultures with varied ratios of meniscal fibrochondrocytes (MFCs) and articular chondrocytes (ACs) were seeded into novel meniscus-specific, ring-shaped agarose wells. The following ratios of MFCs to ACs were used: 0% MFC, 25% MFC, 50% MFC, 75% MFC, and 100% MFC. Over 4 weeks, all ratios of cells self-assembled into three-dimensional constructs with varying mechanobiological and morphological properties. All groups stained for collagen II (Col II), and all groups except the 0% MFC group stained for collagen I (Col I). It was found that the tensile modulus was proportional to the percentage of MFCs employed. The 100% MFC group yielded the greatest mechanical stiffness with 432.2 +/- 47 kPa tensile modulus and an ultimate tensile strength of 23.7 +/- 2.4 kPa. On gross inspection, the 50% MFC constructs were the most similar to our idealized meniscus shape, our primary criterion. A second experiment was performed to examine the anisotropy of constructs as well as to directly compare the scaffoldless, SA method with a poly-glycolic acid (PGA) scaffold-based construct. When compared to PGA constructs, the SA groups were 2-4 times stiffer and stronger in tension. Further, at 8 weeks, SA groups exhibited circumferential fiber bundles similar to native tissue. When pulled in the circumferential direction, the SA group had significantly higher tensile modulus (226 +/- 76 kPa) than when pulled in the radial direction (67 +/- 32 kPa). The PGA constructs had neither a directional collagen fiber orientation nor differences in mechanical properties in the radial or circumferential direction. It is suggested that the geometric constraint imposed by the ring-shaped, nonadhesive mold guides collagen fibril directionality and, thus, alters mechanical properties. Co-culturing ACs and MFCs in this manner appears to be a promising new method for tissue engineering fibrocartilaginous tissues exhibiting a spectrum of mechanical and biomechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue engineering
Tissue engineering CELL & TISSUE ENGINEERING-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信