{"title":"慢惰性气体原子和固体表面之间电荷交换的俄歇中和和电离过程","authors":"R. Carmina Monreal","doi":"10.1016/j.progsurf.2014.01.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Electron and energy transfer processes<span> between an atom or molecule and a surface are extremely important for many applications in physics and </span></span>chemistry<span><span><span>. Therefore a profound understanding of these processes is essential in order to analyze a large variety of physical systems. The microscopic description of the two-electron Auger processes, leading to neutralization/ionization of an ion/neutral atom in front of a </span>solid surface, has been a long-standing problem. It can be dated back to the 1950s when H.D. Hagstrum proposed to use the information contained in the spectrum of the electrons emitted during the neutralization of slow </span>noble gas<span> ions as a surface analytical tool complementing photoelectron spectroscopy. However, only recently a comprehensive description of the Auger neutralization mechanism has been achieved by the combined efforts of theoretical and experimental methods. In this article we review the theoretical models for this problem, stressing how their outcome compare with experimental results. We also analyze the inverse problem of Auger ionization. We emphasize the understanding of the key quantities governing the processes and outline the challenges remaining. This opens new perspectives for future developments of theoretical and experimental work in this field.</span></span></p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"89 1","pages":"Pages 80-125"},"PeriodicalIF":8.7000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2014.01.001","citationCount":"47","resultStr":"{\"title\":\"Auger neutralization and ionization processes for charge exchange between slow noble gas atoms and solid surfaces\",\"authors\":\"R. Carmina Monreal\",\"doi\":\"10.1016/j.progsurf.2014.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Electron and energy transfer processes<span> between an atom or molecule and a surface are extremely important for many applications in physics and </span></span>chemistry<span><span><span>. Therefore a profound understanding of these processes is essential in order to analyze a large variety of physical systems. The microscopic description of the two-electron Auger processes, leading to neutralization/ionization of an ion/neutral atom in front of a </span>solid surface, has been a long-standing problem. It can be dated back to the 1950s when H.D. Hagstrum proposed to use the information contained in the spectrum of the electrons emitted during the neutralization of slow </span>noble gas<span> ions as a surface analytical tool complementing photoelectron spectroscopy. However, only recently a comprehensive description of the Auger neutralization mechanism has been achieved by the combined efforts of theoretical and experimental methods. In this article we review the theoretical models for this problem, stressing how their outcome compare with experimental results. We also analyze the inverse problem of Auger ionization. We emphasize the understanding of the key quantities governing the processes and outline the challenges remaining. This opens new perspectives for future developments of theoretical and experimental work in this field.</span></span></p></div>\",\"PeriodicalId\":416,\"journal\":{\"name\":\"Progress in Surface Science\",\"volume\":\"89 1\",\"pages\":\"Pages 80-125\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2014-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsurf.2014.01.001\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Surface Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079681614000021\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681614000021","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Auger neutralization and ionization processes for charge exchange between slow noble gas atoms and solid surfaces
Electron and energy transfer processes between an atom or molecule and a surface are extremely important for many applications in physics and chemistry. Therefore a profound understanding of these processes is essential in order to analyze a large variety of physical systems. The microscopic description of the two-electron Auger processes, leading to neutralization/ionization of an ion/neutral atom in front of a solid surface, has been a long-standing problem. It can be dated back to the 1950s when H.D. Hagstrum proposed to use the information contained in the spectrum of the electrons emitted during the neutralization of slow noble gas ions as a surface analytical tool complementing photoelectron spectroscopy. However, only recently a comprehensive description of the Auger neutralization mechanism has been achieved by the combined efforts of theoretical and experimental methods. In this article we review the theoretical models for this problem, stressing how their outcome compare with experimental results. We also analyze the inverse problem of Auger ionization. We emphasize the understanding of the key quantities governing the processes and outline the challenges remaining. This opens new perspectives for future developments of theoretical and experimental work in this field.
期刊介绍:
Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.