Hamid Oughaddou , Hanna Enriquez , Mohammed Rachid Tchalala , Handan Yildirim , Andrew J. Mayne , Azzedine Bendounan , Gérald Dujardin , Mustapha Ait Ali , Abdelkader Kara
{"title":"硅烯,一种很有前途的新型二维材料","authors":"Hamid Oughaddou , Hanna Enriquez , Mohammed Rachid Tchalala , Handan Yildirim , Andrew J. Mayne , Azzedine Bendounan , Gérald Dujardin , Mustapha Ait Ali , Abdelkader Kara","doi":"10.1016/j.progsurf.2014.12.003","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Silicene<span> is emerging as a two-dimensional material with very attractive electronic properties for a wide range of applications; it is a particularly promising material for nano-electronics in silicon-based technology. Over the last decade, the existence and stability of silicene has been the subject of much debate. Theoretical studies were the first to predict a puckered honeycomb structure with electronic properties resembling those of graphene. Though these studies were for free-standing silicene, experimental fabrication of silicene has been achieved so far only through </span></span>epitaxial growth on crystalline surfaces. Indeed, it was only in 2010 that researchers presented the first experimental evidence of the formation of silicene on Ag(1</span> <!-->1<!--> <!-->0) and Ag(1<!--> <!-->1<!--> <!-->1), which has launched silicene in a similar way to graphene. This very active field has naturally led to the recent growth of silicene on Ir(1<!--> <!-->1<!--> <!-->1), ZrB<sub>2</sub>(0<!--> <!-->0<!--> <!-->0<!--> <!-->1) and Au(1<!--> <!-->1<!--> <span>0) substrates. However, the electronic properties of epitaxially grown silicene on metal surfaces are influenced by the strong silicene–metal interactions. This has prompted experimental studies of the growth of multi-layer silicene, though the nature of its “silicene” structure remains questionable. Of course, like graphene, synthesizing free-standing silicene represents the ultimate challenge. A first step towards this has been reported recently through chemical exfoliation from calcium disilicide (CaSi</span><sub>2</sub>). In this review, we discuss the experimental and theoretical studies of silicene performed to date. Special attention is given to different experimental studies of the electronic properties of silicene on metal substrates. New avenues for the growth of silicene on other substrates with different chemical characteristics are presented along with foreseeable applications such as nano-devices and novel batteries.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"90 1","pages":"Pages 46-83"},"PeriodicalIF":8.7000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2014.12.003","citationCount":"194","resultStr":"{\"title\":\"Silicene, a promising new 2D material\",\"authors\":\"Hamid Oughaddou , Hanna Enriquez , Mohammed Rachid Tchalala , Handan Yildirim , Andrew J. Mayne , Azzedine Bendounan , Gérald Dujardin , Mustapha Ait Ali , Abdelkader Kara\",\"doi\":\"10.1016/j.progsurf.2014.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Silicene<span> is emerging as a two-dimensional material with very attractive electronic properties for a wide range of applications; it is a particularly promising material for nano-electronics in silicon-based technology. Over the last decade, the existence and stability of silicene has been the subject of much debate. Theoretical studies were the first to predict a puckered honeycomb structure with electronic properties resembling those of graphene. Though these studies were for free-standing silicene, experimental fabrication of silicene has been achieved so far only through </span></span>epitaxial growth on crystalline surfaces. Indeed, it was only in 2010 that researchers presented the first experimental evidence of the formation of silicene on Ag(1</span> <!-->1<!--> <!-->0) and Ag(1<!--> <!-->1<!--> <!-->1), which has launched silicene in a similar way to graphene. This very active field has naturally led to the recent growth of silicene on Ir(1<!--> <!-->1<!--> <!-->1), ZrB<sub>2</sub>(0<!--> <!-->0<!--> <!-->0<!--> <!-->1) and Au(1<!--> <!-->1<!--> <span>0) substrates. However, the electronic properties of epitaxially grown silicene on metal surfaces are influenced by the strong silicene–metal interactions. This has prompted experimental studies of the growth of multi-layer silicene, though the nature of its “silicene” structure remains questionable. Of course, like graphene, synthesizing free-standing silicene represents the ultimate challenge. A first step towards this has been reported recently through chemical exfoliation from calcium disilicide (CaSi</span><sub>2</sub>). In this review, we discuss the experimental and theoretical studies of silicene performed to date. Special attention is given to different experimental studies of the electronic properties of silicene on metal substrates. New avenues for the growth of silicene on other substrates with different chemical characteristics are presented along with foreseeable applications such as nano-devices and novel batteries.</p></div>\",\"PeriodicalId\":416,\"journal\":{\"name\":\"Progress in Surface Science\",\"volume\":\"90 1\",\"pages\":\"Pages 46-83\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsurf.2014.12.003\",\"citationCount\":\"194\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Surface Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079681614000331\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681614000331","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Silicene is emerging as a two-dimensional material with very attractive electronic properties for a wide range of applications; it is a particularly promising material for nano-electronics in silicon-based technology. Over the last decade, the existence and stability of silicene has been the subject of much debate. Theoretical studies were the first to predict a puckered honeycomb structure with electronic properties resembling those of graphene. Though these studies were for free-standing silicene, experimental fabrication of silicene has been achieved so far only through epitaxial growth on crystalline surfaces. Indeed, it was only in 2010 that researchers presented the first experimental evidence of the formation of silicene on Ag(1 1 0) and Ag(1 1 1), which has launched silicene in a similar way to graphene. This very active field has naturally led to the recent growth of silicene on Ir(1 1 1), ZrB2(0 0 0 1) and Au(1 1 0) substrates. However, the electronic properties of epitaxially grown silicene on metal surfaces are influenced by the strong silicene–metal interactions. This has prompted experimental studies of the growth of multi-layer silicene, though the nature of its “silicene” structure remains questionable. Of course, like graphene, synthesizing free-standing silicene represents the ultimate challenge. A first step towards this has been reported recently through chemical exfoliation from calcium disilicide (CaSi2). In this review, we discuss the experimental and theoretical studies of silicene performed to date. Special attention is given to different experimental studies of the electronic properties of silicene on metal substrates. New avenues for the growth of silicene on other substrates with different chemical characteristics are presented along with foreseeable applications such as nano-devices and novel batteries.
期刊介绍:
Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.