从二维材料到异质结构

IF 8.7 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Tianchao Niu, Ang Li
{"title":"从二维材料到异质结构","authors":"Tianchao Niu,&nbsp;Ang Li","doi":"10.1016/j.progsurf.2014.11.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Graphene, hexagonal boron nitride<span>, molybdenum disulphide, and layered </span></span>transition metal dichalcogenides<span> (TMDCs) represent a class of two-dimensional (2D) atomic crystals with unique properties due to reduced dimensionality. Stacking these materials on top of each other in a controlled fashion can create heterostructures with tailored properties that offers another promising approach to design and fabricate novel electronic devices. In this report, we attempt to review this rapidly developing field of hybrid materials. We summarize the fabrication methods for different 2D materials, the layer-by-layer growth of various vertical heterostructures and their electronic properties. Particular interests are given to in-situ stack aforementioned 2D materials in controlled sequences, and the TMDCs heterostructures.</span></p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2014.11.001","citationCount":"123","resultStr":"{\"title\":\"From two-dimensional materials to heterostructures\",\"authors\":\"Tianchao Niu,&nbsp;Ang Li\",\"doi\":\"10.1016/j.progsurf.2014.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Graphene, hexagonal boron nitride<span>, molybdenum disulphide, and layered </span></span>transition metal dichalcogenides<span> (TMDCs) represent a class of two-dimensional (2D) atomic crystals with unique properties due to reduced dimensionality. Stacking these materials on top of each other in a controlled fashion can create heterostructures with tailored properties that offers another promising approach to design and fabricate novel electronic devices. In this report, we attempt to review this rapidly developing field of hybrid materials. We summarize the fabrication methods for different 2D materials, the layer-by-layer growth of various vertical heterostructures and their electronic properties. Particular interests are given to in-situ stack aforementioned 2D materials in controlled sequences, and the TMDCs heterostructures.</span></p></div>\",\"PeriodicalId\":416,\"journal\":{\"name\":\"Progress in Surface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsurf.2014.11.001\",\"citationCount\":\"123\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Surface Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079681614000306\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681614000306","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 123

摘要

石墨烯、六方氮化硼、二硫化钼和层状过渡金属二硫化物(TMDCs)是一类二维(2D)原子晶体,由于降维而具有独特的性质。将这些材料以可控的方式堆叠在一起,可以创建具有定制属性的异质结构,这为设计和制造新型电子设备提供了另一种有前途的方法。在本报告中,我们试图回顾这一快速发展的杂化材料领域。综述了不同二维材料的制备方法、各种垂直异质结构的逐层生长及其电子性能。特别关注的是上述二维材料的原位堆叠控制序列,以及TMDCs的异质结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From two-dimensional materials to heterostructures

Graphene, hexagonal boron nitride, molybdenum disulphide, and layered transition metal dichalcogenides (TMDCs) represent a class of two-dimensional (2D) atomic crystals with unique properties due to reduced dimensionality. Stacking these materials on top of each other in a controlled fashion can create heterostructures with tailored properties that offers another promising approach to design and fabricate novel electronic devices. In this report, we attempt to review this rapidly developing field of hybrid materials. We summarize the fabrication methods for different 2D materials, the layer-by-layer growth of various vertical heterostructures and their electronic properties. Particular interests are given to in-situ stack aforementioned 2D materials in controlled sequences, and the TMDCs heterostructures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Surface Science
Progress in Surface Science 工程技术-物理:凝聚态物理
CiteScore
11.30
自引率
0.00%
发文量
10
审稿时长
3 months
期刊介绍: Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信