Armando Felsani, Anna Maria Mileo, Vittoria Maresca, Mauro Picardo, Marco G Paggi
{"title":"用于人类黑色素瘤研究的新技术。","authors":"Armando Felsani, Anna Maria Mileo, Vittoria Maresca, Mauro Picardo, Marco G Paggi","doi":"10.1016/S0074-7696(07)61006-7","DOIUrl":null,"url":null,"abstract":"<p><p>The amount of information on tumor biology has expanded enormously, essentially due to the completion of the human genome sequencing and to the application of new technologies that represent an exciting breakthrough in molecular analysis. Often these data spring from experimental procedures, such as a serial analysis of gene expression (SAGE) and DNA microarrays, which cannot be defined as hypothesis-driven: it may appear to be a \"brute force\" approach through which no information can be directly generated concerning the specific functions of selected genes in a definite context. However, interesting results are fruitfully generated, and thus it is important to consider the enormous potential these new technologies possess and to learn how to apply this novel form of knowledge in the emerging field of molecular medicine. This review, after a limited outline regarding several classic aspects of human cutaneous melanoma biology, genetics, and clinical approaches, will focus on the proficient use of up-to-date technologies in the study of the neoplastic disease and on their capability to provide effective support to conventional approaches in melanoma diagnosis, prognosis, and treatment.</p>","PeriodicalId":54930,"journal":{"name":"International Review of Cytology-A Survey of Cell Biology","volume":"261 ","pages":"247-86"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0074-7696(07)61006-7","citationCount":"4","resultStr":"{\"title\":\"New technologies used in the study of human melanoma.\",\"authors\":\"Armando Felsani, Anna Maria Mileo, Vittoria Maresca, Mauro Picardo, Marco G Paggi\",\"doi\":\"10.1016/S0074-7696(07)61006-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The amount of information on tumor biology has expanded enormously, essentially due to the completion of the human genome sequencing and to the application of new technologies that represent an exciting breakthrough in molecular analysis. Often these data spring from experimental procedures, such as a serial analysis of gene expression (SAGE) and DNA microarrays, which cannot be defined as hypothesis-driven: it may appear to be a \\\"brute force\\\" approach through which no information can be directly generated concerning the specific functions of selected genes in a definite context. However, interesting results are fruitfully generated, and thus it is important to consider the enormous potential these new technologies possess and to learn how to apply this novel form of knowledge in the emerging field of molecular medicine. This review, after a limited outline regarding several classic aspects of human cutaneous melanoma biology, genetics, and clinical approaches, will focus on the proficient use of up-to-date technologies in the study of the neoplastic disease and on their capability to provide effective support to conventional approaches in melanoma diagnosis, prognosis, and treatment.</p>\",\"PeriodicalId\":54930,\"journal\":{\"name\":\"International Review of Cytology-A Survey of Cell Biology\",\"volume\":\"261 \",\"pages\":\"247-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0074-7696(07)61006-7\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Cytology-A Survey of Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/S0074-7696(07)61006-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Cytology-A Survey of Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/S0074-7696(07)61006-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New technologies used in the study of human melanoma.
The amount of information on tumor biology has expanded enormously, essentially due to the completion of the human genome sequencing and to the application of new technologies that represent an exciting breakthrough in molecular analysis. Often these data spring from experimental procedures, such as a serial analysis of gene expression (SAGE) and DNA microarrays, which cannot be defined as hypothesis-driven: it may appear to be a "brute force" approach through which no information can be directly generated concerning the specific functions of selected genes in a definite context. However, interesting results are fruitfully generated, and thus it is important to consider the enormous potential these new technologies possess and to learn how to apply this novel form of knowledge in the emerging field of molecular medicine. This review, after a limited outline regarding several classic aspects of human cutaneous melanoma biology, genetics, and clinical approaches, will focus on the proficient use of up-to-date technologies in the study of the neoplastic disease and on their capability to provide effective support to conventional approaches in melanoma diagnosis, prognosis, and treatment.