合成调谐的金属间化合物的电子和几何性质作为有效的非均相催化剂

IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Vijaykumar S. Marakatti, Sebastian C. Peter
{"title":"合成调谐的金属间化合物的电子和几何性质作为有效的非均相催化剂","authors":"Vijaykumar S. Marakatti,&nbsp;Sebastian C. Peter","doi":"10.1016/j.progsolidstchem.2018.09.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Intermetallic compounds (IMCs) exhibits unique structural features accompanied by appropriate changes in the electronic structures. These electronically and geometrically tuned structures found to be the excellent catalysts for selected chemical reactions. There is not enough literature comprising detailed synthesis, properties and catalytic activity of IMCs. In this review, a complete overview of the IMCs in the field of </span>heterogeneous catalysis<span><span> has been discussed in detail. The review starts with understanding IMCs and how are they different from alloys, solid solutions and bimetallic. The physicochemical properties such as electronic effect, geometrical effect, steric effect and ordering of the IMCs are explained with appropriate examples. The comprehensive discussion on the synthesis and characterization of IMCs by various methods are also included in the review. The review cover the classification of IMCs into mainly 3 groups based on the active metal a) Platinum b) Palladium c) Nickel and the compounds based on each of these family is discussed along with the structure-activity correlation in different organic reactions. Several miscellaneous examples including other active metals Rh, </span>Ru, Al, and Co are also included in the review followed by the future perspective. Overall, one can fine-tune and design the essential electronic -geometrical properties in the IMCs by combining appropriate metals, leading to the new surface properties suitable for the important organic reactions.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2018.09.001","citationCount":"45","resultStr":"{\"title\":\"Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts\",\"authors\":\"Vijaykumar S. Marakatti,&nbsp;Sebastian C. Peter\",\"doi\":\"10.1016/j.progsolidstchem.2018.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Intermetallic compounds (IMCs) exhibits unique structural features accompanied by appropriate changes in the electronic structures. These electronically and geometrically tuned structures found to be the excellent catalysts for selected chemical reactions. There is not enough literature comprising detailed synthesis, properties and catalytic activity of IMCs. In this review, a complete overview of the IMCs in the field of </span>heterogeneous catalysis<span><span> has been discussed in detail. The review starts with understanding IMCs and how are they different from alloys, solid solutions and bimetallic. The physicochemical properties such as electronic effect, geometrical effect, steric effect and ordering of the IMCs are explained with appropriate examples. The comprehensive discussion on the synthesis and characterization of IMCs by various methods are also included in the review. The review cover the classification of IMCs into mainly 3 groups based on the active metal a) Platinum b) Palladium c) Nickel and the compounds based on each of these family is discussed along with the structure-activity correlation in different organic reactions. Several miscellaneous examples including other active metals Rh, </span>Ru, Al, and Co are also included in the review followed by the future perspective. Overall, one can fine-tune and design the essential electronic -geometrical properties in the IMCs by combining appropriate metals, leading to the new surface properties suitable for the important organic reactions.</span></p></div>\",\"PeriodicalId\":415,\"journal\":{\"name\":\"Progress in Solid State Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2018.09.001\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S007967861830027X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007967861830027X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 45

摘要

金属间化合物(IMCs)具有独特的结构特征,并伴随着电子结构的适当变化。这些电子和几何调谐的结构被发现是某些化学反应的优秀催化剂。目前还没有足够的文献详细地介绍了IMCs的合成、性质和催化活性。本文对异相催化领域的IMCs进行了较为全面的综述。本文首先介绍了IMCs及其与合金、固溶体和双金属的区别。并举例说明了IMCs的电子效应、几何效应、空间效应和有序等物理化学性质。本文还对各种方法合成和表征IMCs进行了全面的讨论。本文综述了以活性金属为基础将IMCs主要分为3类(a)铂、b)钯、c)镍,并讨论了每一类化合物在不同有机反应中的构效关系。包括其他活性金属Rh, Ru, Al和Co在内的几个杂项示例也包括在综述中,然后是未来的展望。总的来说,人们可以通过组合适当的金属来微调和设计imc中基本的电子几何性质,从而获得适合重要有机反应的新表面性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts

Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts

Intermetallic compounds (IMCs) exhibits unique structural features accompanied by appropriate changes in the electronic structures. These electronically and geometrically tuned structures found to be the excellent catalysts for selected chemical reactions. There is not enough literature comprising detailed synthesis, properties and catalytic activity of IMCs. In this review, a complete overview of the IMCs in the field of heterogeneous catalysis has been discussed in detail. The review starts with understanding IMCs and how are they different from alloys, solid solutions and bimetallic. The physicochemical properties such as electronic effect, geometrical effect, steric effect and ordering of the IMCs are explained with appropriate examples. The comprehensive discussion on the synthesis and characterization of IMCs by various methods are also included in the review. The review cover the classification of IMCs into mainly 3 groups based on the active metal a) Platinum b) Palladium c) Nickel and the compounds based on each of these family is discussed along with the structure-activity correlation in different organic reactions. Several miscellaneous examples including other active metals Rh, Ru, Al, and Co are also included in the review followed by the future perspective. Overall, one can fine-tune and design the essential electronic -geometrical properties in the IMCs by combining appropriate metals, leading to the new surface properties suitable for the important organic reactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Solid State Chemistry
Progress in Solid State Chemistry 化学-无机化学与核化学
CiteScore
14.10
自引率
3.30%
发文量
12
期刊介绍: Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信