{"title":"SnO2-ZnO/斜沸石纳米颗粒电化学和光催化活性的综合研究","authors":"Hadis Derikvandi , Alireza Nezamzadeh-Ejhieh","doi":"10.1016/j.molcata.2016.11.011","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanically prepared clinoptilolite nanoparticles (NC) and coupling were used for increasing photocatalytic activity of ZnO and SnO<sub>2</sub>. The raw and modified catalysts were characterized by XRD, FTIR, SEM-EDX, X-ray mapping, DRS, electrochemical impedance spectroscopy (EIS) and BET techniques. The calcined catalysts at 600<!--> <!-->°C for 2<!--> <!-->h showed the best photocatalytic activity in metronidazole (MZ) aqueous solution. Based on the EIS results, this catalyst has the best charge transfer efficiency with respect to other catalysts calcined at lower and higher temperatures. This caused to lower e/h recombination and hence higher photodegradation activity. The mole ratio of ZnO/SnO<sub>2</sub> affects the degradation activity of the catalysts so the best activities were obtained for the ZnO<sub>2.4</sub>-SnO<sub>2(2.0)</sub>/NC (ZS-NC) and ZnO<sub>3.3</sub>-SnO<sub>2(2.0)</sub>/NC (Z<sub>2</sub>S-NC) catalysts at pH 3. Cyclic voltammograms of the modified carbon paste electrodes with ZS-NC and Z<sub>2</sub>S-NC showed increased peak current in phosphate buffer which confirm formation of the ZnO and SnO<sub>2</sub> semiconductors inside NC. Also, peak current dependence of the modified electrode to MZ concentration confirmed that the degradation extent of MZ can be estimated by electrochemical methods.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 158-169"},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.011","citationCount":"74","resultStr":"{\"title\":\"A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles\",\"authors\":\"Hadis Derikvandi , Alireza Nezamzadeh-Ejhieh\",\"doi\":\"10.1016/j.molcata.2016.11.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mechanically prepared clinoptilolite nanoparticles (NC) and coupling were used for increasing photocatalytic activity of ZnO and SnO<sub>2</sub>. The raw and modified catalysts were characterized by XRD, FTIR, SEM-EDX, X-ray mapping, DRS, electrochemical impedance spectroscopy (EIS) and BET techniques. The calcined catalysts at 600<!--> <!-->°C for 2<!--> <!-->h showed the best photocatalytic activity in metronidazole (MZ) aqueous solution. Based on the EIS results, this catalyst has the best charge transfer efficiency with respect to other catalysts calcined at lower and higher temperatures. This caused to lower e/h recombination and hence higher photodegradation activity. The mole ratio of ZnO/SnO<sub>2</sub> affects the degradation activity of the catalysts so the best activities were obtained for the ZnO<sub>2.4</sub>-SnO<sub>2(2.0)</sub>/NC (ZS-NC) and ZnO<sub>3.3</sub>-SnO<sub>2(2.0)</sub>/NC (Z<sub>2</sub>S-NC) catalysts at pH 3. Cyclic voltammograms of the modified carbon paste electrodes with ZS-NC and Z<sub>2</sub>S-NC showed increased peak current in phosphate buffer which confirm formation of the ZnO and SnO<sub>2</sub> semiconductors inside NC. Also, peak current dependence of the modified electrode to MZ concentration confirmed that the degradation extent of MZ can be estimated by electrochemical methods.</p></div>\",\"PeriodicalId\":370,\"journal\":{\"name\":\"Journal of Molecular Catalysis A: Chemical\",\"volume\":\"426 \",\"pages\":\"Pages 158-169\"},\"PeriodicalIF\":5.0620,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.011\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis A: Chemical\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138111691630485X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138111691630485X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles
Mechanically prepared clinoptilolite nanoparticles (NC) and coupling were used for increasing photocatalytic activity of ZnO and SnO2. The raw and modified catalysts were characterized by XRD, FTIR, SEM-EDX, X-ray mapping, DRS, electrochemical impedance spectroscopy (EIS) and BET techniques. The calcined catalysts at 600 °C for 2 h showed the best photocatalytic activity in metronidazole (MZ) aqueous solution. Based on the EIS results, this catalyst has the best charge transfer efficiency with respect to other catalysts calcined at lower and higher temperatures. This caused to lower e/h recombination and hence higher photodegradation activity. The mole ratio of ZnO/SnO2 affects the degradation activity of the catalysts so the best activities were obtained for the ZnO2.4-SnO2(2.0)/NC (ZS-NC) and ZnO3.3-SnO2(2.0)/NC (Z2S-NC) catalysts at pH 3. Cyclic voltammograms of the modified carbon paste electrodes with ZS-NC and Z2S-NC showed increased peak current in phosphate buffer which confirm formation of the ZnO and SnO2 semiconductors inside NC. Also, peak current dependence of the modified electrode to MZ concentration confirmed that the degradation extent of MZ can be estimated by electrochemical methods.
期刊介绍:
The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.