Timothy A Hore, Edda Koina, Matthew J Wakefield, Jennifer A Marshall Graves
{"title":"在有袋类和单孔类哺乳动物中,x染色体失活中心的同源区域已被破坏。","authors":"Timothy A Hore, Edda Koina, Matthew J Wakefield, Jennifer A Marshall Graves","doi":"10.1007/s10577-007-1119-0","DOIUrl":null,"url":null,"abstract":"<p><p>Marsupial, as well as eutherian, mammals are subject to X chromosome inactivation in the somatic cells of females, although the phenotype and the molecular mechanism differ in important respects. Monotreme mammals appear to subscribe at least to a form of dosage compensation of X-borne genes. An important question is whether inactivation in these non-eutherian mammals involves co-ordination by a control locus homologous to the XIST gene and neighbouring genes, which play a key regulatory role in human and mouse X inactivation. We mapped BACs containing several orthologues of protein-coding genes that flank human and mouse XIST and genes that lie in the homologous region in chicken and frog. We found that these genes map to two distant locations on the opossum X, and also to different locations on a platypus autosome. We failed to find any trace of an XIST orthologue in any marsupial or monotreme or on any flanking BAC, confirming the conclusion from recent work that non-eutherian mammals lack XIST. We propose the region homologous to the human and mouse X-inactivation centre expanded in early mammals, and this unstable region was disrupted independently in marsupial and monotreme lineages. In the eutherian lineage, inserted and existing sequences provided the starting material for the non-translated RNAs of the X-inactivation centre, including XIST.</p>","PeriodicalId":347802,"journal":{"name":"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology","volume":" ","pages":"147-61"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10577-007-1119-0","citationCount":"98","resultStr":"{\"title\":\"The region homologous to the X-chromosome inactivation centre has been disrupted in marsupial and monotreme mammals.\",\"authors\":\"Timothy A Hore, Edda Koina, Matthew J Wakefield, Jennifer A Marshall Graves\",\"doi\":\"10.1007/s10577-007-1119-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Marsupial, as well as eutherian, mammals are subject to X chromosome inactivation in the somatic cells of females, although the phenotype and the molecular mechanism differ in important respects. Monotreme mammals appear to subscribe at least to a form of dosage compensation of X-borne genes. An important question is whether inactivation in these non-eutherian mammals involves co-ordination by a control locus homologous to the XIST gene and neighbouring genes, which play a key regulatory role in human and mouse X inactivation. We mapped BACs containing several orthologues of protein-coding genes that flank human and mouse XIST and genes that lie in the homologous region in chicken and frog. We found that these genes map to two distant locations on the opossum X, and also to different locations on a platypus autosome. We failed to find any trace of an XIST orthologue in any marsupial or monotreme or on any flanking BAC, confirming the conclusion from recent work that non-eutherian mammals lack XIST. We propose the region homologous to the human and mouse X-inactivation centre expanded in early mammals, and this unstable region was disrupted independently in marsupial and monotreme lineages. In the eutherian lineage, inserted and existing sequences provided the starting material for the non-translated RNAs of the X-inactivation centre, including XIST.</p>\",\"PeriodicalId\":347802,\"journal\":{\"name\":\"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology\",\"volume\":\" \",\"pages\":\"147-61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10577-007-1119-0\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10577-007-1119-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2007/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-007-1119-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2007/3/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
The region homologous to the X-chromosome inactivation centre has been disrupted in marsupial and monotreme mammals.
Marsupial, as well as eutherian, mammals are subject to X chromosome inactivation in the somatic cells of females, although the phenotype and the molecular mechanism differ in important respects. Monotreme mammals appear to subscribe at least to a form of dosage compensation of X-borne genes. An important question is whether inactivation in these non-eutherian mammals involves co-ordination by a control locus homologous to the XIST gene and neighbouring genes, which play a key regulatory role in human and mouse X inactivation. We mapped BACs containing several orthologues of protein-coding genes that flank human and mouse XIST and genes that lie in the homologous region in chicken and frog. We found that these genes map to two distant locations on the opossum X, and also to different locations on a platypus autosome. We failed to find any trace of an XIST orthologue in any marsupial or monotreme or on any flanking BAC, confirming the conclusion from recent work that non-eutherian mammals lack XIST. We propose the region homologous to the human and mouse X-inactivation centre expanded in early mammals, and this unstable region was disrupted independently in marsupial and monotreme lineages. In the eutherian lineage, inserted and existing sequences provided the starting material for the non-translated RNAs of the X-inactivation centre, including XIST.