{"title":"秋水仙碱和端粒染色体构象对小麦-黑麦减数分裂前期着丝粒和端粒动力学的影响。","authors":"Eduardo Corredor, Tomás Naranjo","doi":"10.1007/s10577-006-1117-7","DOIUrl":null,"url":null,"abstract":"<p><p>Association of telomeres in a bouquet and clustering of centromere regions have been proposed to be involved in the search and recognition of homologous partners. We have analysed the role of these structures in meiotic chromosome pairing in wheat-rye addition lines by applying colchicine for disturbing presynaptic telomere movements and by modifying the centromere position from submetacentric to telocentric for studying centromere effects. Rye chromosomes, wheat and rye centromeres, and telomeres were identified by fluorescence in-situ hybridization. Presynaptic association of centromeres in pairs or in more complex structures involved mainly non-homologous chromosomes as deduced from the behaviour of rye centromeres. While centromere association was not affected by colchicine, colchicine inhibited bouquet formation, which caused failure of homologous synapsis. Homologous centromeres of rye telocentrics associated earlier than those of rye submetacentric chromosomes, indicating that migration of the telocentrics' centromeres to the telomere pole during bouquet formation facilitated their association. Homologous chromosomes associated in premeiotic interphase can recognize each other and initiate synapsis at zygotene. However, telomere convergence is needed for bringing together the majority of homologous pairs that normally occupy separate territories in premeiotic nuclei.</p>","PeriodicalId":347802,"journal":{"name":"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology","volume":" ","pages":"231-45"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10577-006-1117-7","citationCount":"36","resultStr":"{\"title\":\"Effect of colchicine and telocentric chromosome conformation on centromere and telomere dynamics at meiotic prophase I in wheat-rye additions.\",\"authors\":\"Eduardo Corredor, Tomás Naranjo\",\"doi\":\"10.1007/s10577-006-1117-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Association of telomeres in a bouquet and clustering of centromere regions have been proposed to be involved in the search and recognition of homologous partners. We have analysed the role of these structures in meiotic chromosome pairing in wheat-rye addition lines by applying colchicine for disturbing presynaptic telomere movements and by modifying the centromere position from submetacentric to telocentric for studying centromere effects. Rye chromosomes, wheat and rye centromeres, and telomeres were identified by fluorescence in-situ hybridization. Presynaptic association of centromeres in pairs or in more complex structures involved mainly non-homologous chromosomes as deduced from the behaviour of rye centromeres. While centromere association was not affected by colchicine, colchicine inhibited bouquet formation, which caused failure of homologous synapsis. Homologous centromeres of rye telocentrics associated earlier than those of rye submetacentric chromosomes, indicating that migration of the telocentrics' centromeres to the telomere pole during bouquet formation facilitated their association. Homologous chromosomes associated in premeiotic interphase can recognize each other and initiate synapsis at zygotene. However, telomere convergence is needed for bringing together the majority of homologous pairs that normally occupy separate territories in premeiotic nuclei.</p>\",\"PeriodicalId\":347802,\"journal\":{\"name\":\"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology\",\"volume\":\" \",\"pages\":\"231-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10577-006-1117-7\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10577-006-1117-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2007/2/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-006-1117-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2007/2/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of colchicine and telocentric chromosome conformation on centromere and telomere dynamics at meiotic prophase I in wheat-rye additions.
Association of telomeres in a bouquet and clustering of centromere regions have been proposed to be involved in the search and recognition of homologous partners. We have analysed the role of these structures in meiotic chromosome pairing in wheat-rye addition lines by applying colchicine for disturbing presynaptic telomere movements and by modifying the centromere position from submetacentric to telocentric for studying centromere effects. Rye chromosomes, wheat and rye centromeres, and telomeres were identified by fluorescence in-situ hybridization. Presynaptic association of centromeres in pairs or in more complex structures involved mainly non-homologous chromosomes as deduced from the behaviour of rye centromeres. While centromere association was not affected by colchicine, colchicine inhibited bouquet formation, which caused failure of homologous synapsis. Homologous centromeres of rye telocentrics associated earlier than those of rye submetacentric chromosomes, indicating that migration of the telocentrics' centromeres to the telomere pole during bouquet formation facilitated their association. Homologous chromosomes associated in premeiotic interphase can recognize each other and initiate synapsis at zygotene. However, telomere convergence is needed for bringing together the majority of homologous pairs that normally occupy separate territories in premeiotic nuclei.