非参数似然比检验从微阵列数据中识别差异表达基因。

Sankar Bokka, Sunil K Mathur
{"title":"非参数似然比检验从微阵列数据中识别差异表达基因。","authors":"Sankar Bokka,&nbsp;Sunil K Mathur","doi":"10.2165/00822942-200605040-00009","DOIUrl":null,"url":null,"abstract":"<p><p>Microarray experiments contribute significantly to the progress in disease treatment by enabling a precise and early diagnosis. One of the major objectives of microarray experiments is to identify differentially expressed genes under various conditions. The statistical methods currently used to analyse microarray data are inadequate, mainly due to the lack of understanding of the distribution of microarray data. We present a nonparametric likelihood ratio (NPLR) test to identify differentially expressed genes using microarray data. The NPLR test is highly robust against extreme values and does not assume the distribution of the parent population. Simulation studies show that the NPLR test is more powerful than some of the commonly used methods, such as the two-sample t-test, the Mann-Whitney U-test and significance analysis of microarrays (SAM). When applied to microarray data, we found that the NPLR test identifies more differentially expressed genes than its competitors. The asymptotic distribution of the NPLR test statistic and the p-value function is presented. The application of the NPLR method is shown, using both synthetic and real-life data. The biological significance of some of the genes detected only by the NPLR method is discussed.</p>","PeriodicalId":87049,"journal":{"name":"Applied bioinformatics","volume":"5 4","pages":"267-76"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2165/00822942-200605040-00009","citationCount":"5","resultStr":"{\"title\":\"A nonparametric likelihood ratio test to identify differentially expressed genes from microarray data.\",\"authors\":\"Sankar Bokka,&nbsp;Sunil K Mathur\",\"doi\":\"10.2165/00822942-200605040-00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microarray experiments contribute significantly to the progress in disease treatment by enabling a precise and early diagnosis. One of the major objectives of microarray experiments is to identify differentially expressed genes under various conditions. The statistical methods currently used to analyse microarray data are inadequate, mainly due to the lack of understanding of the distribution of microarray data. We present a nonparametric likelihood ratio (NPLR) test to identify differentially expressed genes using microarray data. The NPLR test is highly robust against extreme values and does not assume the distribution of the parent population. Simulation studies show that the NPLR test is more powerful than some of the commonly used methods, such as the two-sample t-test, the Mann-Whitney U-test and significance analysis of microarrays (SAM). When applied to microarray data, we found that the NPLR test identifies more differentially expressed genes than its competitors. The asymptotic distribution of the NPLR test statistic and the p-value function is presented. The application of the NPLR method is shown, using both synthetic and real-life data. The biological significance of some of the genes detected only by the NPLR method is discussed.</p>\",\"PeriodicalId\":87049,\"journal\":{\"name\":\"Applied bioinformatics\",\"volume\":\"5 4\",\"pages\":\"267-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2165/00822942-200605040-00009\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2165/00822942-200605040-00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2165/00822942-200605040-00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

微阵列实验通过实现精确和早期诊断,对疾病治疗的进展做出了重大贡献。微阵列实验的主要目的之一是鉴定不同条件下的差异表达基因。目前用于分析微阵列数据的统计方法是不充分的,主要是由于缺乏对微阵列数据分布的了解。我们提出了一种非参数似然比(NPLR)测试,使用微阵列数据识别差异表达基因。NPLR检验对极值具有很强的稳健性,并且不假设亲本群体的分布。仿真研究表明,NPLR检验比一些常用的方法,如双样本t检验、Mann-Whitney u检验和微阵列显著性分析(SAM)更有效。当应用于微阵列数据时,我们发现NPLR测试比其竞争对手识别出更多的差异表达基因。给出了NPLR检验统计量和p值函数的渐近分布。用合成数据和实际数据说明了NPLR方法的应用。讨论了仅用NPLR方法检测到的一些基因的生物学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A nonparametric likelihood ratio test to identify differentially expressed genes from microarray data.

Microarray experiments contribute significantly to the progress in disease treatment by enabling a precise and early diagnosis. One of the major objectives of microarray experiments is to identify differentially expressed genes under various conditions. The statistical methods currently used to analyse microarray data are inadequate, mainly due to the lack of understanding of the distribution of microarray data. We present a nonparametric likelihood ratio (NPLR) test to identify differentially expressed genes using microarray data. The NPLR test is highly robust against extreme values and does not assume the distribution of the parent population. Simulation studies show that the NPLR test is more powerful than some of the commonly used methods, such as the two-sample t-test, the Mann-Whitney U-test and significance analysis of microarrays (SAM). When applied to microarray data, we found that the NPLR test identifies more differentially expressed genes than its competitors. The asymptotic distribution of the NPLR test statistic and the p-value function is presented. The application of the NPLR method is shown, using both synthetic and real-life data. The biological significance of some of the genes detected only by the NPLR method is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信