{"title":"相界与生物膜。","authors":"Gerald W Feigenson","doi":"10.1146/annurev.biophys.36.040306.132721","DOIUrl":null,"url":null,"abstract":"<p><p>Bilayer mixtures of lipids are used by many researchers as chemically simple models for biological membranes. In particular, observations on three-component bilayer mixtures containing cholesterol show rich phase behavior, including several regions of two-phase coexistence and one region of three-phase coexistence. Yet, the relationship between these simple model mixtures and biological membranes, which contain hundreds of different proteins and lipids, is not clear. Many of the model mixtures have been chosen for study because they exhibit readily observed phase separations, not because they are good mimics of cell membrane components. If the many components of cell membranes could be grouped in some way, then understanding the phase behaviors of biological membranes might be enhanced. Furthermore, if the underlying interaction energies between lipids and proteins can be determined, then it might be possible to model the distributions of lipids and proteins in a bilayer membrane, even in complex mixtures.</p>","PeriodicalId":8270,"journal":{"name":"Annual review of biophysics and biomolecular structure","volume":"36 ","pages":"63-77"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.biophys.36.040306.132721","citationCount":"159","resultStr":"{\"title\":\"Phase boundaries and biological membranes.\",\"authors\":\"Gerald W Feigenson\",\"doi\":\"10.1146/annurev.biophys.36.040306.132721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bilayer mixtures of lipids are used by many researchers as chemically simple models for biological membranes. In particular, observations on three-component bilayer mixtures containing cholesterol show rich phase behavior, including several regions of two-phase coexistence and one region of three-phase coexistence. Yet, the relationship between these simple model mixtures and biological membranes, which contain hundreds of different proteins and lipids, is not clear. Many of the model mixtures have been chosen for study because they exhibit readily observed phase separations, not because they are good mimics of cell membrane components. If the many components of cell membranes could be grouped in some way, then understanding the phase behaviors of biological membranes might be enhanced. Furthermore, if the underlying interaction energies between lipids and proteins can be determined, then it might be possible to model the distributions of lipids and proteins in a bilayer membrane, even in complex mixtures.</p>\",\"PeriodicalId\":8270,\"journal\":{\"name\":\"Annual review of biophysics and biomolecular structure\",\"volume\":\"36 \",\"pages\":\"63-77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev.biophys.36.040306.132721\",\"citationCount\":\"159\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of biophysics and biomolecular structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev.biophys.36.040306.132721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biophysics and biomolecular structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.biophys.36.040306.132721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bilayer mixtures of lipids are used by many researchers as chemically simple models for biological membranes. In particular, observations on three-component bilayer mixtures containing cholesterol show rich phase behavior, including several regions of two-phase coexistence and one region of three-phase coexistence. Yet, the relationship between these simple model mixtures and biological membranes, which contain hundreds of different proteins and lipids, is not clear. Many of the model mixtures have been chosen for study because they exhibit readily observed phase separations, not because they are good mimics of cell membrane components. If the many components of cell membranes could be grouped in some way, then understanding the phase behaviors of biological membranes might be enhanced. Furthermore, if the underlying interaction energies between lipids and proteins can be determined, then it might be possible to model the distributions of lipids and proteins in a bilayer membrane, even in complex mixtures.