{"title":"[不同苹果品种采后成熟和软化过程中细胞壁多糖的降解]。","authors":"Chang-Hai Jin, Masashi Mizuno, Juan Kan, Biao Suo, Zhi-Jun Wang, Hironobu Tsuchida","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The cell wall material (CWM) and eight cell wall polysaccharides fractions were extracted from 'Fuji' and 'Kinsei' apples during storage at different time (0 and 42 days). The sugar composition characteristics of each fraction were determined by gas chromatography. The results showed that, during storages, the firmness of 'Kinsei' apples decreased significantly, and a significant peak of ethylene production was shown after 10 d storage, but only a little ethylene was produced in 'Fuji' apples, which had a better storability. Compare to other cell wall polysaccharide fractions, in Na(2)CO(3)-soluble pectic fractions of apple fruit, there were abundant rhamnogalacturonan I (RG-I), which branched highly in side chains due to the compositions of arabinans, galactans, arabinogalactans etc. As for cell wall polysaccharides, in 'Kinsei' apples, the decrease of pectic fractions was shown most significantly in Na(2)CO(3)-1 fraction, which was associated with a significant degradation of arabinosyl and galactosyl residues on the side chains. Further more, higher molecular mass in Na(2)CO(3)-1 pectic polysaccharides degraded and turned into ones with smaller molecular mass. From these results, the degradation of side chains in Na(2)CO(3)-1 pectic polysaccharides under the activity of enzyme was considered one of the most significant factors of apple fruit softening through modifying the network of cell wall polysaccharides.</p>","PeriodicalId":64030,"journal":{"name":"植物生理与分子生物学学报","volume":"32 6","pages":"617-26"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Degradation of cell wall polysaccharides during postharvest fruit ripening and softening of different apple varieties].\",\"authors\":\"Chang-Hai Jin, Masashi Mizuno, Juan Kan, Biao Suo, Zhi-Jun Wang, Hironobu Tsuchida\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cell wall material (CWM) and eight cell wall polysaccharides fractions were extracted from 'Fuji' and 'Kinsei' apples during storage at different time (0 and 42 days). The sugar composition characteristics of each fraction were determined by gas chromatography. The results showed that, during storages, the firmness of 'Kinsei' apples decreased significantly, and a significant peak of ethylene production was shown after 10 d storage, but only a little ethylene was produced in 'Fuji' apples, which had a better storability. Compare to other cell wall polysaccharide fractions, in Na(2)CO(3)-soluble pectic fractions of apple fruit, there were abundant rhamnogalacturonan I (RG-I), which branched highly in side chains due to the compositions of arabinans, galactans, arabinogalactans etc. As for cell wall polysaccharides, in 'Kinsei' apples, the decrease of pectic fractions was shown most significantly in Na(2)CO(3)-1 fraction, which was associated with a significant degradation of arabinosyl and galactosyl residues on the side chains. Further more, higher molecular mass in Na(2)CO(3)-1 pectic polysaccharides degraded and turned into ones with smaller molecular mass. From these results, the degradation of side chains in Na(2)CO(3)-1 pectic polysaccharides under the activity of enzyme was considered one of the most significant factors of apple fruit softening through modifying the network of cell wall polysaccharides.</p>\",\"PeriodicalId\":64030,\"journal\":{\"name\":\"植物生理与分子生物学学报\",\"volume\":\"32 6\",\"pages\":\"617-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"植物生理与分子生物学学报\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"植物生理与分子生物学学报","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Degradation of cell wall polysaccharides during postharvest fruit ripening and softening of different apple varieties].
The cell wall material (CWM) and eight cell wall polysaccharides fractions were extracted from 'Fuji' and 'Kinsei' apples during storage at different time (0 and 42 days). The sugar composition characteristics of each fraction were determined by gas chromatography. The results showed that, during storages, the firmness of 'Kinsei' apples decreased significantly, and a significant peak of ethylene production was shown after 10 d storage, but only a little ethylene was produced in 'Fuji' apples, which had a better storability. Compare to other cell wall polysaccharide fractions, in Na(2)CO(3)-soluble pectic fractions of apple fruit, there were abundant rhamnogalacturonan I (RG-I), which branched highly in side chains due to the compositions of arabinans, galactans, arabinogalactans etc. As for cell wall polysaccharides, in 'Kinsei' apples, the decrease of pectic fractions was shown most significantly in Na(2)CO(3)-1 fraction, which was associated with a significant degradation of arabinosyl and galactosyl residues on the side chains. Further more, higher molecular mass in Na(2)CO(3)-1 pectic polysaccharides degraded and turned into ones with smaller molecular mass. From these results, the degradation of side chains in Na(2)CO(3)-1 pectic polysaccharides under the activity of enzyme was considered one of the most significant factors of apple fruit softening through modifying the network of cell wall polysaccharides.