心脏缺血和解耦:缺血和梗死中的间隙连接。

Stefan Dhein
{"title":"心脏缺血和解耦:缺血和梗死中的间隙连接。","authors":"Stefan Dhein","doi":"10.1159/000092570","DOIUrl":null,"url":null,"abstract":"<p><p>Acute cardiac ischemia is often associated with ventricular arrhythmia and fibrillation. Due to the loss of ATP, the depolarization of the fibers, and the intracellular Na(+) and Ca(2+) overload with concomitant acidification as well as the accumulation of lysophosphoglyceride and arachidonic acid metabolites, propagation of action potentials will be impaired by two factors: (a) reduced sodium channel availability and (b) gap junction uncoupling. While gap junction uncoupling leads to predominant transverse uncoupling, reduced I (Na) availability results in impaired longitudinal conduction. Complete gap junction uncoupling would initiate arrhythmia, while intermediate uncoupling has been shown to enhance the safety factor (SF) of propagation, limiting the current loss to non-depolarized areas. In contrast, a reduction in I(Na) availability reduces SF, and partial gap junction uncoupling might enable effective but slow conduction which, on the other hand, could form the basis for some kind of reentrant arrhythmia, paving the way for new anti-arrhythmic approaches in gap junction coupling. In the chronic phase, remodeling processes also involve gap junctions and lead to highly heterogeneous non-uniform tissue which may serve as an arrhythmogenic trigger.</p>","PeriodicalId":50954,"journal":{"name":"Advances in Cardiology","volume":"42 ","pages":"198-212"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000092570","citationCount":"41","resultStr":"{\"title\":\"Cardiac ischemia and uncoupling: gap junctions in ischemia and infarction.\",\"authors\":\"Stefan Dhein\",\"doi\":\"10.1159/000092570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute cardiac ischemia is often associated with ventricular arrhythmia and fibrillation. Due to the loss of ATP, the depolarization of the fibers, and the intracellular Na(+) and Ca(2+) overload with concomitant acidification as well as the accumulation of lysophosphoglyceride and arachidonic acid metabolites, propagation of action potentials will be impaired by two factors: (a) reduced sodium channel availability and (b) gap junction uncoupling. While gap junction uncoupling leads to predominant transverse uncoupling, reduced I (Na) availability results in impaired longitudinal conduction. Complete gap junction uncoupling would initiate arrhythmia, while intermediate uncoupling has been shown to enhance the safety factor (SF) of propagation, limiting the current loss to non-depolarized areas. In contrast, a reduction in I(Na) availability reduces SF, and partial gap junction uncoupling might enable effective but slow conduction which, on the other hand, could form the basis for some kind of reentrant arrhythmia, paving the way for new anti-arrhythmic approaches in gap junction coupling. In the chronic phase, remodeling processes also involve gap junctions and lead to highly heterogeneous non-uniform tissue which may serve as an arrhythmogenic trigger.</p>\",\"PeriodicalId\":50954,\"journal\":{\"name\":\"Advances in Cardiology\",\"volume\":\"42 \",\"pages\":\"198-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000092570\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000092570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000092570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

急性心脏缺血常与室性心律失常和纤颤有关。由于ATP的损失、纤维的去极化、伴随酸化的细胞内Na(+)和Ca(2+)过载以及溶血甘油酯和花生四烯酸代谢物的积累,动作电位的传播将受到两个因素的损害:(a)钠通道可用性降低和(b)间隙连接解耦。虽然间隙结不耦合导致主要的横向不耦合,但降低的I (Na)可用性导致纵向传导受损。间隙连接完全解耦会引发心律失常,而中间解耦已被证明可以提高传播的安全系数(SF),限制电流在非去极化区域的损失。相反,I(Na)可用性的降低降低了SF,而部分间隙连接解耦可能实现有效但缓慢的传导,另一方面,这可能形成某种可重入性心律失常的基础,为间隙连接耦合的新抗心律失常方法铺平道路。在慢性期,重塑过程也涉及间隙连接,并导致高度不均匀的组织,这可能是致心律失常的触发因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardiac ischemia and uncoupling: gap junctions in ischemia and infarction.

Acute cardiac ischemia is often associated with ventricular arrhythmia and fibrillation. Due to the loss of ATP, the depolarization of the fibers, and the intracellular Na(+) and Ca(2+) overload with concomitant acidification as well as the accumulation of lysophosphoglyceride and arachidonic acid metabolites, propagation of action potentials will be impaired by two factors: (a) reduced sodium channel availability and (b) gap junction uncoupling. While gap junction uncoupling leads to predominant transverse uncoupling, reduced I (Na) availability results in impaired longitudinal conduction. Complete gap junction uncoupling would initiate arrhythmia, while intermediate uncoupling has been shown to enhance the safety factor (SF) of propagation, limiting the current loss to non-depolarized areas. In contrast, a reduction in I(Na) availability reduces SF, and partial gap junction uncoupling might enable effective but slow conduction which, on the other hand, could form the basis for some kind of reentrant arrhythmia, paving the way for new anti-arrhythmic approaches in gap junction coupling. In the chronic phase, remodeling processes also involve gap junctions and lead to highly heterogeneous non-uniform tissue which may serve as an arrhythmogenic trigger.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信