气管支气管树颗粒沉积的三维计算流体动力学模拟。

Kristin K Isaacs, R B Schlesinger, Ted B Martonen
{"title":"气管支气管树颗粒沉积的三维计算流体动力学模拟。","authors":"Kristin K Isaacs,&nbsp;R B Schlesinger,&nbsp;Ted B Martonen","doi":"10.1089/jam.2006.19.344","DOIUrl":null,"url":null,"abstract":"<p><p>Simulation of the dynamics and disposition of inhaled particles within human lungs is an invaluable tool in both the development of inhaled pharmacologic drugs and the risk assessment of environmental particulate matter (PM). The goal of the present focused study was to assess the utility of three-dimensional computational fluid dynamics (CFD) models in studying the local deposition patterns of PM in respiratory airways. CFD models were validated using data from published experimental studies in human lung casts. The ability of CFD to appropriately simulate trends in deposition patterns due to changing ventilatory conditions was specifically addressed. CFD simulations of airflow and particle motion were performed in a model of the trachea and main bronchi using Fluent Inc.'s FIDAP CFD software. Particle diameters of 8 microm were considered for input flow rates of 15 and 60 L/min. CFD was able to reproduce the observed spatial heterogeneities of deposition within the modeled bifurcations, and correctly predicted the \"hot-spots\" of particle deposition on carinal ridges. The CFD methods also predicted observed differences in deposition for high-versus-low flow rates. CFD models may provide an efficient means of studying the complex effects of airway geometry, particle characteristics, and ventilatory parameters on particle deposition and therefore aid in the design of human subject experiments.</p>","PeriodicalId":14878,"journal":{"name":"Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine","volume":"19 3","pages":"344-52"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/jam.2006.19.344","citationCount":"32","resultStr":"{\"title\":\"Three-dimensional computational fluid dynamics simulations of particle deposition in the tracheobronchial tree.\",\"authors\":\"Kristin K Isaacs,&nbsp;R B Schlesinger,&nbsp;Ted B Martonen\",\"doi\":\"10.1089/jam.2006.19.344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Simulation of the dynamics and disposition of inhaled particles within human lungs is an invaluable tool in both the development of inhaled pharmacologic drugs and the risk assessment of environmental particulate matter (PM). The goal of the present focused study was to assess the utility of three-dimensional computational fluid dynamics (CFD) models in studying the local deposition patterns of PM in respiratory airways. CFD models were validated using data from published experimental studies in human lung casts. The ability of CFD to appropriately simulate trends in deposition patterns due to changing ventilatory conditions was specifically addressed. CFD simulations of airflow and particle motion were performed in a model of the trachea and main bronchi using Fluent Inc.'s FIDAP CFD software. Particle diameters of 8 microm were considered for input flow rates of 15 and 60 L/min. CFD was able to reproduce the observed spatial heterogeneities of deposition within the modeled bifurcations, and correctly predicted the \\\"hot-spots\\\" of particle deposition on carinal ridges. The CFD methods also predicted observed differences in deposition for high-versus-low flow rates. CFD models may provide an efficient means of studying the complex effects of airway geometry, particle characteristics, and ventilatory parameters on particle deposition and therefore aid in the design of human subject experiments.</p>\",\"PeriodicalId\":14878,\"journal\":{\"name\":\"Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine\",\"volume\":\"19 3\",\"pages\":\"344-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/jam.2006.19.344\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/jam.2006.19.344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/jam.2006.19.344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

模拟人体肺部吸入颗粒的动力学和处置是开发吸入药物和评估环境颗粒物(PM)风险的宝贵工具。本研究的目的是评估三维计算流体动力学(CFD)模型在研究PM在呼吸道局部沉积模式中的效用。CFD模型使用已发表的人体肺铸型实验研究数据进行验证。特别讨论了CFD适当模拟由于通风条件变化而导致的沉积模式趋势的能力。利用Fluent公司的FIDAP CFD软件对气管和主支气管模型进行了气流和颗粒运动的CFD模拟。粒径为8微米,输入流速为15和60 L/min。CFD能够再现模拟分岔内观测到的沉积空间非均质性,并正确预测凸脊上颗粒沉积的“热点”。CFD方法还预测了高流速和低流速下观察到的沉积差异。CFD模型可以为研究气道几何形状、颗粒特性和通气参数对颗粒沉积的复杂影响提供有效手段,从而有助于人体受试者实验的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional computational fluid dynamics simulations of particle deposition in the tracheobronchial tree.

Simulation of the dynamics and disposition of inhaled particles within human lungs is an invaluable tool in both the development of inhaled pharmacologic drugs and the risk assessment of environmental particulate matter (PM). The goal of the present focused study was to assess the utility of three-dimensional computational fluid dynamics (CFD) models in studying the local deposition patterns of PM in respiratory airways. CFD models were validated using data from published experimental studies in human lung casts. The ability of CFD to appropriately simulate trends in deposition patterns due to changing ventilatory conditions was specifically addressed. CFD simulations of airflow and particle motion were performed in a model of the trachea and main bronchi using Fluent Inc.'s FIDAP CFD software. Particle diameters of 8 microm were considered for input flow rates of 15 and 60 L/min. CFD was able to reproduce the observed spatial heterogeneities of deposition within the modeled bifurcations, and correctly predicted the "hot-spots" of particle deposition on carinal ridges. The CFD methods also predicted observed differences in deposition for high-versus-low flow rates. CFD models may provide an efficient means of studying the complex effects of airway geometry, particle characteristics, and ventilatory parameters on particle deposition and therefore aid in the design of human subject experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信