基于贝叶斯基因选择的多项概率回归多类癌症分类。

X Zhou, X Wang, E R Dougherty
{"title":"基于贝叶斯基因选择的多项概率回归多类癌症分类。","authors":"X Zhou,&nbsp;X Wang,&nbsp;E R Dougherty","doi":"10.1049/ip-syb:20050015","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the problems of multi-class cancer classification from gene expression data. After discussing the multinomial probit regression model with Bayesian gene selection, we propose two Bayesian gene selection schemes: one employs different strongest genes for different probit regressions; the other employs the same strongest genes for all regressions. Some fast implementation issues for Bayesian gene selection are discussed, including preselection of the strongest genes and recursive computation of the estimation errors using QR decomposition. The proposed gene selection techniques are applied to analyse real breast cancer data, small round blue-cell tumours, the national cancer institute's anti-cancer drug-screen data and acute leukaemia data. Compared with existing multi-class cancer classifications, our proposed methods can find which genes are the most important genes affecting which kind of cancer. Also, the strongest genes selected using our methods are consistent with the biological significance. The recognition accuracies are very high using our proposed methods.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"153 2","pages":"70-8"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-syb:20050015","citationCount":"3","resultStr":"{\"title\":\"Multi-class cancer classification using multinomial probit regression with Bayesian gene selection.\",\"authors\":\"X Zhou,&nbsp;X Wang,&nbsp;E R Dougherty\",\"doi\":\"10.1049/ip-syb:20050015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider the problems of multi-class cancer classification from gene expression data. After discussing the multinomial probit regression model with Bayesian gene selection, we propose two Bayesian gene selection schemes: one employs different strongest genes for different probit regressions; the other employs the same strongest genes for all regressions. Some fast implementation issues for Bayesian gene selection are discussed, including preselection of the strongest genes and recursive computation of the estimation errors using QR decomposition. The proposed gene selection techniques are applied to analyse real breast cancer data, small round blue-cell tumours, the national cancer institute's anti-cancer drug-screen data and acute leukaemia data. Compared with existing multi-class cancer classifications, our proposed methods can find which genes are the most important genes affecting which kind of cancer. Also, the strongest genes selected using our methods are consistent with the biological significance. The recognition accuracies are very high using our proposed methods.</p>\",\"PeriodicalId\":87457,\"journal\":{\"name\":\"Systems biology\",\"volume\":\"153 2\",\"pages\":\"70-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/ip-syb:20050015\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ip-syb:20050015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-syb:20050015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑了从基因表达数据进行多类别肿瘤分类的问题。在讨论了多项概率回归模型与贝叶斯基因选择的基础上,提出了两种贝叶斯基因选择方案:一种是针对不同的概率回归采用不同的最强基因;另一种方法对所有回归都使用相同的最强基因。讨论了贝叶斯基因选择的一些快速实现问题,包括最强基因的预选和利用QR分解递归计算估计误差。提出的基因选择技术被应用于分析真实的乳腺癌数据、小圆形蓝细胞肿瘤、国家癌症研究所的抗癌药物筛选数据和急性白血病数据。与现有的多类别癌症分类方法相比,我们提出的方法可以发现哪些基因是影响哪种癌症的最重要基因。此外,用我们的方法选择的最强基因与生物学意义一致。本文提出的方法具有很高的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-class cancer classification using multinomial probit regression with Bayesian gene selection.

We consider the problems of multi-class cancer classification from gene expression data. After discussing the multinomial probit regression model with Bayesian gene selection, we propose two Bayesian gene selection schemes: one employs different strongest genes for different probit regressions; the other employs the same strongest genes for all regressions. Some fast implementation issues for Bayesian gene selection are discussed, including preselection of the strongest genes and recursive computation of the estimation errors using QR decomposition. The proposed gene selection techniques are applied to analyse real breast cancer data, small round blue-cell tumours, the national cancer institute's anti-cancer drug-screen data and acute leukaemia data. Compared with existing multi-class cancer classifications, our proposed methods can find which genes are the most important genes affecting which kind of cancer. Also, the strongest genes selected using our methods are consistent with the biological significance. The recognition accuracies are very high using our proposed methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信