Mohammad Behnamnia , Abolfazl Dehghan Monfared , Mohammad Sarmadivaleh
{"title":"水-气(纯/混合)界面张力建模的混合人工智能范式","authors":"Mohammad Behnamnia , Abolfazl Dehghan Monfared , Mohammad Sarmadivaleh","doi":"10.1016/j.jngse.2022.104812","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>There are many applications with the two-phase flow of gas (hydrocarbon, non-hydrocarbon, and their mixture) and water in different courses of gas recovery from natural gas resources and gas storage/sequestration programs. As the interface of gas-water is crucial in such systems, precise prediction of gas-water interfacial tension (IFT) can aid in the simulation and development of such processes. </span>Artificial intelligence techniques (AIT) are being used to estimate IFT. In this paper, the IFT of the gas and water system was estimated based on models built using a comprehensive data set comprised of 2658 experimental data points. These cover a wide range of input parameters, i.e., </span>specific gravity<span> (0.5539–1.5225), temperature (278.1–477.5944 K), pressure (0.01–280 MPa), and water salinity (0–200,000 ppm). The intelligent models include Least-Squares Boosting (LS-Boost), Multilayer </span></span>perceptron<span> (MLP), Least Square Support Vector Machine<span> (LSSVM), and Committee machine intelligent system (CMIS). The models reproduce the IFT data in 7.4–81.69 mN/m. The modeling approaches contain new hybrid forms in which Imperialist Competitive Algorithm (ICA), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Levenberg-Marquardt algorithm (LM), Bayesian regularization<span> algorithm (BR), Scaled conjugate gradient algorithm (SCG), and Coupled Simulated Annealing (CSA) were used for optimization and learning purposes. Statistical and graphical analyses were implemented to check the agreement between the prediction and evaluation data. The results show a reasonable coherence for most models, among which the CMIS approach exhibited a promising performance. CMIS was accurate even in conditions of varying specific gravity, pressure, temperature, and salinity. The findings were also compared with available models in the literature and demonstrated superior predictions of the CMIS model. Also, outlier detection by the Leverage approach demonstrates the validity of the gathered dataset and, subsequently, the CMIS model.</span></span></span></p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":"108 ","pages":"Article 104812"},"PeriodicalIF":4.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid artificial intelligence paradigms for modeling of water-gas (pure/mixture) interfacial tension\",\"authors\":\"Mohammad Behnamnia , Abolfazl Dehghan Monfared , Mohammad Sarmadivaleh\",\"doi\":\"10.1016/j.jngse.2022.104812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>There are many applications with the two-phase flow of gas (hydrocarbon, non-hydrocarbon, and their mixture) and water in different courses of gas recovery from natural gas resources and gas storage/sequestration programs. As the interface of gas-water is crucial in such systems, precise prediction of gas-water interfacial tension (IFT) can aid in the simulation and development of such processes. </span>Artificial intelligence techniques (AIT) are being used to estimate IFT. In this paper, the IFT of the gas and water system was estimated based on models built using a comprehensive data set comprised of 2658 experimental data points. These cover a wide range of input parameters, i.e., </span>specific gravity<span> (0.5539–1.5225), temperature (278.1–477.5944 K), pressure (0.01–280 MPa), and water salinity (0–200,000 ppm). The intelligent models include Least-Squares Boosting (LS-Boost), Multilayer </span></span>perceptron<span> (MLP), Least Square Support Vector Machine<span> (LSSVM), and Committee machine intelligent system (CMIS). The models reproduce the IFT data in 7.4–81.69 mN/m. The modeling approaches contain new hybrid forms in which Imperialist Competitive Algorithm (ICA), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Levenberg-Marquardt algorithm (LM), Bayesian regularization<span> algorithm (BR), Scaled conjugate gradient algorithm (SCG), and Coupled Simulated Annealing (CSA) were used for optimization and learning purposes. Statistical and graphical analyses were implemented to check the agreement between the prediction and evaluation data. The results show a reasonable coherence for most models, among which the CMIS approach exhibited a promising performance. CMIS was accurate even in conditions of varying specific gravity, pressure, temperature, and salinity. The findings were also compared with available models in the literature and demonstrated superior predictions of the CMIS model. Also, outlier detection by the Leverage approach demonstrates the validity of the gathered dataset and, subsequently, the CMIS model.</span></span></span></p></div>\",\"PeriodicalId\":372,\"journal\":{\"name\":\"Journal of Natural Gas Science and Engineering\",\"volume\":\"108 \",\"pages\":\"Article 104812\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875510022003985\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875510022003985","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Hybrid artificial intelligence paradigms for modeling of water-gas (pure/mixture) interfacial tension
There are many applications with the two-phase flow of gas (hydrocarbon, non-hydrocarbon, and their mixture) and water in different courses of gas recovery from natural gas resources and gas storage/sequestration programs. As the interface of gas-water is crucial in such systems, precise prediction of gas-water interfacial tension (IFT) can aid in the simulation and development of such processes. Artificial intelligence techniques (AIT) are being used to estimate IFT. In this paper, the IFT of the gas and water system was estimated based on models built using a comprehensive data set comprised of 2658 experimental data points. These cover a wide range of input parameters, i.e., specific gravity (0.5539–1.5225), temperature (278.1–477.5944 K), pressure (0.01–280 MPa), and water salinity (0–200,000 ppm). The intelligent models include Least-Squares Boosting (LS-Boost), Multilayer perceptron (MLP), Least Square Support Vector Machine (LSSVM), and Committee machine intelligent system (CMIS). The models reproduce the IFT data in 7.4–81.69 mN/m. The modeling approaches contain new hybrid forms in which Imperialist Competitive Algorithm (ICA), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Levenberg-Marquardt algorithm (LM), Bayesian regularization algorithm (BR), Scaled conjugate gradient algorithm (SCG), and Coupled Simulated Annealing (CSA) were used for optimization and learning purposes. Statistical and graphical analyses were implemented to check the agreement between the prediction and evaluation data. The results show a reasonable coherence for most models, among which the CMIS approach exhibited a promising performance. CMIS was accurate even in conditions of varying specific gravity, pressure, temperature, and salinity. The findings were also compared with available models in the literature and demonstrated superior predictions of the CMIS model. Also, outlier detection by the Leverage approach demonstrates the validity of the gathered dataset and, subsequently, the CMIS model.
期刊介绍:
The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market.
An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.