线粒体基因组,衰老和神经退行性疾病。

D A Cottrell, D M Turnbull
{"title":"线粒体基因组,衰老和神经退行性疾病。","authors":"D A Cottrell, D M Turnbull","doi":"10.1159/000061856","DOIUrl":null,"url":null,"abstract":"Mitochondria contain the only extra-nuclear source of DNA. Under evolutionary pressure mitochondrial DNA (mtDNA) has adapted from genomes containing over 1,000 kb containing significant quantities of non-coding DNA to the highly compact mammalian mtDNA. In humans, the mitochondrial genome consists of a small (16.5 kb) double-stranded circular genome constituting less than 1% of the total cellular nucleic acid, yet its role is essential for the survival and function of the mitochondria and hence the cell (Fig. 1). Human mtDNA is a highly efficient structure in terms of expressed DNA containing no introns. It encodes for 37 genes, all of which are involved in synthesising subunits of the respiratory chain complex, either directly as 13 essential polypeptide components, or indirectly as the 22 transfer RNAs and the 2 ribosomal RNAs of the mitochondrial protein synthesis machinery (Fig. 1b). Human cells contain several hundred to many thousand mitochondria, with each mitochondrion having 2–10 copies of mtDNA [1]. Therefore several thousand copies of mtDNA can be present within a single cell. Both mutated and wild-type (normal) mtDNA can co-exist in any proportion, a situation termed heteroplasmy. The level of mutant mtDNA can vary considerably between mitochondria, cells and even tissues within the same individual. The mitochondrial genome mutates at a faster rate than its nuclear counterpart for several reasons. Firstly mitochondria lack nucleotide excision and recombination DNA repair mechanisms [2]. Secondly mtDNA lacks the structurally DNA stabilising proteins known as histones. Thirdly mtDNAs reside and replicate close to the inner mitochondrial membrane and hence are exposed","PeriodicalId":18989,"journal":{"name":"Nestle Nutrition workshop series. Clinical & performance programme","volume":"6 ","pages":"1-13; discussion 13-6"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000061856","citationCount":"1","resultStr":"{\"title\":\"The mitochondrial genome, aging and neurodegenerative disorders.\",\"authors\":\"D A Cottrell, D M Turnbull\",\"doi\":\"10.1159/000061856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mitochondria contain the only extra-nuclear source of DNA. Under evolutionary pressure mitochondrial DNA (mtDNA) has adapted from genomes containing over 1,000 kb containing significant quantities of non-coding DNA to the highly compact mammalian mtDNA. In humans, the mitochondrial genome consists of a small (16.5 kb) double-stranded circular genome constituting less than 1% of the total cellular nucleic acid, yet its role is essential for the survival and function of the mitochondria and hence the cell (Fig. 1). Human mtDNA is a highly efficient structure in terms of expressed DNA containing no introns. It encodes for 37 genes, all of which are involved in synthesising subunits of the respiratory chain complex, either directly as 13 essential polypeptide components, or indirectly as the 22 transfer RNAs and the 2 ribosomal RNAs of the mitochondrial protein synthesis machinery (Fig. 1b). Human cells contain several hundred to many thousand mitochondria, with each mitochondrion having 2–10 copies of mtDNA [1]. Therefore several thousand copies of mtDNA can be present within a single cell. Both mutated and wild-type (normal) mtDNA can co-exist in any proportion, a situation termed heteroplasmy. The level of mutant mtDNA can vary considerably between mitochondria, cells and even tissues within the same individual. The mitochondrial genome mutates at a faster rate than its nuclear counterpart for several reasons. Firstly mitochondria lack nucleotide excision and recombination DNA repair mechanisms [2]. Secondly mtDNA lacks the structurally DNA stabilising proteins known as histones. Thirdly mtDNAs reside and replicate close to the inner mitochondrial membrane and hence are exposed\",\"PeriodicalId\":18989,\"journal\":{\"name\":\"Nestle Nutrition workshop series. Clinical & performance programme\",\"volume\":\"6 \",\"pages\":\"1-13; discussion 13-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000061856\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nestle Nutrition workshop series. Clinical & performance programme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000061856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nestle Nutrition workshop series. Clinical & performance programme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000061856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The mitochondrial genome, aging and neurodegenerative disorders.
Mitochondria contain the only extra-nuclear source of DNA. Under evolutionary pressure mitochondrial DNA (mtDNA) has adapted from genomes containing over 1,000 kb containing significant quantities of non-coding DNA to the highly compact mammalian mtDNA. In humans, the mitochondrial genome consists of a small (16.5 kb) double-stranded circular genome constituting less than 1% of the total cellular nucleic acid, yet its role is essential for the survival and function of the mitochondria and hence the cell (Fig. 1). Human mtDNA is a highly efficient structure in terms of expressed DNA containing no introns. It encodes for 37 genes, all of which are involved in synthesising subunits of the respiratory chain complex, either directly as 13 essential polypeptide components, or indirectly as the 22 transfer RNAs and the 2 ribosomal RNAs of the mitochondrial protein synthesis machinery (Fig. 1b). Human cells contain several hundred to many thousand mitochondria, with each mitochondrion having 2–10 copies of mtDNA [1]. Therefore several thousand copies of mtDNA can be present within a single cell. Both mutated and wild-type (normal) mtDNA can co-exist in any proportion, a situation termed heteroplasmy. The level of mutant mtDNA can vary considerably between mitochondria, cells and even tissues within the same individual. The mitochondrial genome mutates at a faster rate than its nuclear counterpart for several reasons. Firstly mitochondria lack nucleotide excision and recombination DNA repair mechanisms [2]. Secondly mtDNA lacks the structurally DNA stabilising proteins known as histones. Thirdly mtDNAs reside and replicate close to the inner mitochondrial membrane and hence are exposed
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信