中风后的运动康复

Frederick M. Ivey , Charlene E. Hafer-Macko , Richard F. Macko
{"title":"中风后的运动康复","authors":"Frederick M. Ivey ,&nbsp;Charlene E. Hafer-Macko ,&nbsp;Richard F. Macko","doi":"10.1016/j.nurx.2006.07.011","DOIUrl":null,"url":null,"abstract":"<div><p>Stroke is a leading cause of disability that results not only in persistent neurological deficits, but also profound physical deconditioning that propagates disability and worsens cardiovascular risk. The potential for exercise-mediated adaptations to improve function, fitness, and cardiovascular health after stroke has been underestimated: it represents an emerging arena in neurotherapeutics. To define the health rationale for cardiovascular (aerobic) exercise, we first outline the impact of debilitating secondary biological changes in muscle and body composition on fitness and metabolic health after stroke. We provide an overview of evidence-based advances in exercise therapeutics, with a focus on task-oriented models that combine a progressive aerobic conditioning stimulus with motor learning to improve multiple physiological domains that determine longitudinal outcomes after stroke. Although progress in development of safe and effective exercise strategies is advancing, fundamental questions regarding dose intensity, prescription to optimize central and peripheral neuromuscular adaptations, and the public health value of exercise in secondary stroke prevention remain unanswered. Key issues steering future research in exercise neurotherapeutics are discussed within the context of initiatives to facilitate translation to community-based studies, requisite for dissemination.</p></div>","PeriodicalId":87195,"journal":{"name":"NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics","volume":"3 4","pages":"Pages 439-450"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nurx.2006.07.011","citationCount":"121","resultStr":"{\"title\":\"Exercise Rehabilitation After Stroke\",\"authors\":\"Frederick M. Ivey ,&nbsp;Charlene E. Hafer-Macko ,&nbsp;Richard F. Macko\",\"doi\":\"10.1016/j.nurx.2006.07.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stroke is a leading cause of disability that results not only in persistent neurological deficits, but also profound physical deconditioning that propagates disability and worsens cardiovascular risk. The potential for exercise-mediated adaptations to improve function, fitness, and cardiovascular health after stroke has been underestimated: it represents an emerging arena in neurotherapeutics. To define the health rationale for cardiovascular (aerobic) exercise, we first outline the impact of debilitating secondary biological changes in muscle and body composition on fitness and metabolic health after stroke. We provide an overview of evidence-based advances in exercise therapeutics, with a focus on task-oriented models that combine a progressive aerobic conditioning stimulus with motor learning to improve multiple physiological domains that determine longitudinal outcomes after stroke. Although progress in development of safe and effective exercise strategies is advancing, fundamental questions regarding dose intensity, prescription to optimize central and peripheral neuromuscular adaptations, and the public health value of exercise in secondary stroke prevention remain unanswered. Key issues steering future research in exercise neurotherapeutics are discussed within the context of initiatives to facilitate translation to community-based studies, requisite for dissemination.</p></div>\",\"PeriodicalId\":87195,\"journal\":{\"name\":\"NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics\",\"volume\":\"3 4\",\"pages\":\"Pages 439-450\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.nurx.2006.07.011\",\"citationCount\":\"121\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1545534306001337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1545534306001337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 121

摘要

中风是导致残疾的主要原因,不仅会导致持续的神经功能缺损,还会导致严重的身体不适,从而传播残疾并恶化心血管风险。运动介导的适应改善中风后功能、健康和心血管健康的潜力被低估了:它代表了神经治疗的一个新兴领域。为了定义心血管(有氧)运动的健康原理,我们首先概述了中风后肌肉和身体成分的衰弱性继发性生物学变化对健康和代谢健康的影响。我们概述了运动疗法的循证进展,重点关注任务导向模型,该模型将渐进式有氧调节刺激与运动学习相结合,以改善决定中风后纵向结果的多个生理领域。尽管安全有效的运动策略的发展正在取得进展,但有关剂量强度、优化中枢和周围神经肌肉适应的处方以及运动在继发性卒中预防中的公共卫生价值等基本问题仍未得到解答。指导未来运动神经疗法研究的关键问题在倡议的背景下进行讨论,以促进转化为社区研究,传播所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exercise Rehabilitation After Stroke

Stroke is a leading cause of disability that results not only in persistent neurological deficits, but also profound physical deconditioning that propagates disability and worsens cardiovascular risk. The potential for exercise-mediated adaptations to improve function, fitness, and cardiovascular health after stroke has been underestimated: it represents an emerging arena in neurotherapeutics. To define the health rationale for cardiovascular (aerobic) exercise, we first outline the impact of debilitating secondary biological changes in muscle and body composition on fitness and metabolic health after stroke. We provide an overview of evidence-based advances in exercise therapeutics, with a focus on task-oriented models that combine a progressive aerobic conditioning stimulus with motor learning to improve multiple physiological domains that determine longitudinal outcomes after stroke. Although progress in development of safe and effective exercise strategies is advancing, fundamental questions regarding dose intensity, prescription to optimize central and peripheral neuromuscular adaptations, and the public health value of exercise in secondary stroke prevention remain unanswered. Key issues steering future research in exercise neurotherapeutics are discussed within the context of initiatives to facilitate translation to community-based studies, requisite for dissemination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信