光滑双稳s系。

E O Voit
{"title":"光滑双稳s系。","authors":"E O Voit","doi":"10.1049/ip-syb:20050063","DOIUrl":null,"url":null,"abstract":"<p><p>S-systems have been used as models of biochemical systems for over 30 years. One of their hallmarks is that, although they are highly non-linear, their steady states are characterised by linear equations. This allows streamlined analyses of stability, sensitivities and gains as well as objective, mathematically controlled comparisons of similar model designs. Regular S-systems have a unique steady state at which none of the system variables is zero. This makes it difficult to represent switching phenomena, as they occur, for instance, in the expression of genes, cell cycle phenomena and signal transduction. Previously, two strategies were proposed to account for switches. One was based on a technique called recasting, which permits the modelling of any differentiable non-linearities, including bistability, but typically does not allow steady-state analyses based on linear equations. The second strategy formulated the switching system in a piece-wise fashion, where each piece consisted of a regular S-system. A representation gleaned from a simplified form of recasting is proposed and it is possible to divide the characterisation of the steady states into two phases, the first of which is linear, whereas the other is non-linear, but easy to execute. The article discusses a representative pathway with two stable states and one unstable state. The pathway model exhibits strong separation between the stable states as well as hysteresis.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"152 4","pages":"207-13"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-syb:20050063","citationCount":"19","resultStr":"{\"title\":\"Smooth bistable S-systems.\",\"authors\":\"E O Voit\",\"doi\":\"10.1049/ip-syb:20050063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>S-systems have been used as models of biochemical systems for over 30 years. One of their hallmarks is that, although they are highly non-linear, their steady states are characterised by linear equations. This allows streamlined analyses of stability, sensitivities and gains as well as objective, mathematically controlled comparisons of similar model designs. Regular S-systems have a unique steady state at which none of the system variables is zero. This makes it difficult to represent switching phenomena, as they occur, for instance, in the expression of genes, cell cycle phenomena and signal transduction. Previously, two strategies were proposed to account for switches. One was based on a technique called recasting, which permits the modelling of any differentiable non-linearities, including bistability, but typically does not allow steady-state analyses based on linear equations. The second strategy formulated the switching system in a piece-wise fashion, where each piece consisted of a regular S-system. A representation gleaned from a simplified form of recasting is proposed and it is possible to divide the characterisation of the steady states into two phases, the first of which is linear, whereas the other is non-linear, but easy to execute. The article discusses a representative pathway with two stable states and one unstable state. The pathway model exhibits strong separation between the stable states as well as hysteresis.</p>\",\"PeriodicalId\":87457,\"journal\":{\"name\":\"Systems biology\",\"volume\":\"152 4\",\"pages\":\"207-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/ip-syb:20050063\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ip-syb:20050063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-syb:20050063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

s系统作为生化系统的模型已有30多年的历史。它们的一个特点是,尽管它们是高度非线性的,但它们的稳定状态却以线性方程为特征。这允许对稳定性、灵敏度和增益进行流线型分析,以及对类似模型设计进行客观、数学控制的比较。正则s系统有一个唯一的稳态,在此状态下系统变量都不为零。这使得难以表示开关现象,因为它们发生,例如,在基因表达,细胞周期现象和信号转导。以前,提出了两种策略来解释切换。一种是基于一种叫做重铸的技术,这种技术允许建模任何可微分的非线性,包括双稳态,但通常不允许基于线性方程的稳态分析。第二种策略是以一种分段的方式来制定切换系统,其中每个分段由一个规则的s系统组成。提出了一种从简化形式的重铸中收集的表示,并且可以将稳态的特征划分为两个阶段,其中第一个阶段是线性的,而另一个阶段是非线性的,但易于执行。本文讨论了一种具有代表性的具有两个稳定状态和一个不稳定状态的路径。路径模型表现出较强的稳态分离性和滞后性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smooth bistable S-systems.

S-systems have been used as models of biochemical systems for over 30 years. One of their hallmarks is that, although they are highly non-linear, their steady states are characterised by linear equations. This allows streamlined analyses of stability, sensitivities and gains as well as objective, mathematically controlled comparisons of similar model designs. Regular S-systems have a unique steady state at which none of the system variables is zero. This makes it difficult to represent switching phenomena, as they occur, for instance, in the expression of genes, cell cycle phenomena and signal transduction. Previously, two strategies were proposed to account for switches. One was based on a technique called recasting, which permits the modelling of any differentiable non-linearities, including bistability, but typically does not allow steady-state analyses based on linear equations. The second strategy formulated the switching system in a piece-wise fashion, where each piece consisted of a regular S-system. A representation gleaned from a simplified form of recasting is proposed and it is possible to divide the characterisation of the steady states into two phases, the first of which is linear, whereas the other is non-linear, but easy to execute. The article discusses a representative pathway with two stable states and one unstable state. The pathway model exhibits strong separation between the stable states as well as hysteresis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信