具有不确定参数的生化网络。

W Liebermeister, E Klipp
{"title":"具有不确定参数的生化网络。","authors":"W Liebermeister,&nbsp;E Klipp","doi":"10.1049/ip-syb:20045033","DOIUrl":null,"url":null,"abstract":"<p><p>The modelling of biochemical networks becomes delicate if kinetic parameters are varying, uncertain or unknown. Facing this situation, we quantify uncertain knowledge or beliefs about parameters by probability distributions. We show how parameter distributions can be used to infer probabilistic statements about dynamic network properties, such as steady-state fluxes and concentrations, signal characteristics or control coefficients. The parameter distributions can also serve as priors in Bayesian statistical analysis. We propose a graphical scheme, the 'dependence graph', to bring out known dependencies between parameters, for instance, due to the equilibrium constants. If a parameter distribution is narrow, the resulting distribution of the variables can be computed by expanding them around a set of mean parameter values. We compute the distributions of concentrations, fluxes and probabilities for qualitative variables such as flux directions. The probabilistic framework allows the study of metabolic correlations, and it provides simple measures of variability and stochastic sensitivity. It also shows clearly how the variability of biological systems is related to the metabolic response coefficients.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"152 3","pages":"97-107"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-syb:20045033","citationCount":"65","resultStr":"{\"title\":\"Biochemical networks with uncertain parameters.\",\"authors\":\"W Liebermeister,&nbsp;E Klipp\",\"doi\":\"10.1049/ip-syb:20045033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The modelling of biochemical networks becomes delicate if kinetic parameters are varying, uncertain or unknown. Facing this situation, we quantify uncertain knowledge or beliefs about parameters by probability distributions. We show how parameter distributions can be used to infer probabilistic statements about dynamic network properties, such as steady-state fluxes and concentrations, signal characteristics or control coefficients. The parameter distributions can also serve as priors in Bayesian statistical analysis. We propose a graphical scheme, the 'dependence graph', to bring out known dependencies between parameters, for instance, due to the equilibrium constants. If a parameter distribution is narrow, the resulting distribution of the variables can be computed by expanding them around a set of mean parameter values. We compute the distributions of concentrations, fluxes and probabilities for qualitative variables such as flux directions. The probabilistic framework allows the study of metabolic correlations, and it provides simple measures of variability and stochastic sensitivity. It also shows clearly how the variability of biological systems is related to the metabolic response coefficients.</p>\",\"PeriodicalId\":87457,\"journal\":{\"name\":\"Systems biology\",\"volume\":\"152 3\",\"pages\":\"97-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/ip-syb:20045033\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ip-syb:20045033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-syb:20045033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

如果动力学参数是变化的、不确定的或未知的,生化网络的建模就会变得很微妙。面对这种情况,我们通过概率分布来量化关于参数的不确定知识或信念。我们展示了如何使用参数分布来推断动态网络特性的概率陈述,例如稳态通量和浓度,信号特征或控制系数。这些参数分布也可以作为贝叶斯统计分析的先验。我们提出了一种图形方案,“依赖图”,以揭示参数之间已知的依赖关系,例如,由于平衡常数。如果参数分布很窄,则可以通过围绕一组平均参数值展开变量来计算变量的最终分布。我们计算浓度、通量的分布以及通量方向等定性变量的概率。概率框架允许对代谢相关性进行研究,并且它提供了可变性和随机敏感性的简单度量。它还清楚地显示了生物系统的可变性是如何与代谢反应系数相关的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biochemical networks with uncertain parameters.

The modelling of biochemical networks becomes delicate if kinetic parameters are varying, uncertain or unknown. Facing this situation, we quantify uncertain knowledge or beliefs about parameters by probability distributions. We show how parameter distributions can be used to infer probabilistic statements about dynamic network properties, such as steady-state fluxes and concentrations, signal characteristics or control coefficients. The parameter distributions can also serve as priors in Bayesian statistical analysis. We propose a graphical scheme, the 'dependence graph', to bring out known dependencies between parameters, for instance, due to the equilibrium constants. If a parameter distribution is narrow, the resulting distribution of the variables can be computed by expanding them around a set of mean parameter values. We compute the distributions of concentrations, fluxes and probabilities for qualitative variables such as flux directions. The probabilistic framework allows the study of metabolic correlations, and it provides simple measures of variability and stochastic sensitivity. It also shows clearly how the variability of biological systems is related to the metabolic response coefficients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信