{"title":"Ifg2-H19和Dlk1-Gtl2对小鼠孤雌生殖的双重屏障。","authors":"T Kono, M Kawahara, Q Wu, H Hiura, Y Obata","doi":"10.1007/3-540-31437-7_3","DOIUrl":null,"url":null,"abstract":"<p><p>The functional difference between the maternal and paternal genome, which is characterized by epigenetic modifications during gametogenesis, that is genomic imprinting, prevents mammalian embryos from parthenogenesis. Genomic imprinting leads to nonequivalent expression of imprinted genes from the maternal and paternal alleles. However, our research showed that alteration of maternal imprinting by oocyte reconstruction using nongrowing oocytes together with deletion of the H19 gene, provides appropriate expression of maternally imprinted genes. Here we discuss that further alteration of paternally imprinted gene expressions at chromosomes 7 and 12 allows the ng/fg parthenogenetic embryos to develop to term, suggesting that the paternal contribution is obligatory for the descendant.</p>","PeriodicalId":80277,"journal":{"name":"Ernst Schering Research Foundation workshop","volume":" 60","pages":"23-33"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/3-540-31437-7_3","citationCount":"6","resultStr":"{\"title\":\"Paternal dual barrier by Ifg2-H19 and Dlk1-Gtl2 to parthenogenesis in mice.\",\"authors\":\"T Kono, M Kawahara, Q Wu, H Hiura, Y Obata\",\"doi\":\"10.1007/3-540-31437-7_3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The functional difference between the maternal and paternal genome, which is characterized by epigenetic modifications during gametogenesis, that is genomic imprinting, prevents mammalian embryos from parthenogenesis. Genomic imprinting leads to nonequivalent expression of imprinted genes from the maternal and paternal alleles. However, our research showed that alteration of maternal imprinting by oocyte reconstruction using nongrowing oocytes together with deletion of the H19 gene, provides appropriate expression of maternally imprinted genes. Here we discuss that further alteration of paternally imprinted gene expressions at chromosomes 7 and 12 allows the ng/fg parthenogenetic embryos to develop to term, suggesting that the paternal contribution is obligatory for the descendant.</p>\",\"PeriodicalId\":80277,\"journal\":{\"name\":\"Ernst Schering Research Foundation workshop\",\"volume\":\" 60\",\"pages\":\"23-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/3-540-31437-7_3\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ernst Schering Research Foundation workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/3-540-31437-7_3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ernst Schering Research Foundation workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/3-540-31437-7_3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Paternal dual barrier by Ifg2-H19 and Dlk1-Gtl2 to parthenogenesis in mice.
The functional difference between the maternal and paternal genome, which is characterized by epigenetic modifications during gametogenesis, that is genomic imprinting, prevents mammalian embryos from parthenogenesis. Genomic imprinting leads to nonequivalent expression of imprinted genes from the maternal and paternal alleles. However, our research showed that alteration of maternal imprinting by oocyte reconstruction using nongrowing oocytes together with deletion of the H19 gene, provides appropriate expression of maternally imprinted genes. Here we discuss that further alteration of paternally imprinted gene expressions at chromosomes 7 and 12 allows the ng/fg parthenogenetic embryos to develop to term, suggesting that the paternal contribution is obligatory for the descendant.