猫导水管周围灰质中gaba免疫反应神经元和终末:光镜和电镜研究。

Journal of Neurocytology Pub Date : 2005-12-01 Epub Date: 2006-08-10 DOI:10.1007/s11068-006-9440-7
Paolo Barbaresi
{"title":"猫导水管周围灰质中gaba免疫反应神经元和终末:光镜和电镜研究。","authors":"Paolo Barbaresi","doi":"10.1007/s11068-006-9440-7","DOIUrl":null,"url":null,"abstract":"<p><p>Immunocytochemical and electron microscopic methods were used to study the GABAergic innervation in adult cat periaqueductal gray matter (PAG). A mouse monoclonal antibody against gamma -aminobutyric acid (GABA) was used to visualize the inhibitory neuronal system of PAG. At light microscopy, GABA-immunopositive (GABA(IP)) neurons formed two longitudinally oriented columns in the dorsolateral and ventrolateral PAG that accounted for 36% of the neuronal population of both PAG columns; their perikaryal cross-sectional area was smaller than that of unlabeled (UNL) neurons found in the same PAG subdivisions. At electron microscopic level, patches of GABA immunoreactivity were readily detected in neuronal cell bodies, proximal and distal dendrites, axons and axon terminals. Approximately 35-36% of all terminals were GABA(IP); they established symmetric synapses with dendrites (84.72% of the sample in the dorsolateral PAG and 86.09% of the sample in the ventrolateral PAG) or with cell bodies (7-10% of the sample). Moreover, 49.15% of GABA(IP) axon terminals in the dorsolateral and 52.16% in the ventrolateral PAG established symmetric synapses with GABA(IP) dendrites. Immunopositive axon terminals and unlabeled terminals were also involved in the formation of a complex synaptic arrangment, i.e. clusters of synaptic terminals in close contact between them that were often observed in the PAG neuropil. Moreover, a fair number of axo-axonic synapses between GABA(IP) and/or UNL axon terminals were present in both PAG subdivisions. Several dendro-dendritic synapses between labeled and unlabeled dendrites were also observed in both PAG subdivisions. These results suggest that in the cat PAG there exist at least two classes of GABArgic neurons. The first class could exert a tonic control on PAG projecting neurons, the second could act on those GABAergic neurons that in turn keep PAG projecting neurons under tonic inhibition. The functional implications of this type of GABAergic synapse organization are discussed in relation to the dishinibitory processes that take place in the PAG.</p>","PeriodicalId":16494,"journal":{"name":"Journal of Neurocytology","volume":"34 6","pages":"471-87"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-006-9440-7","citationCount":"27","resultStr":"{\"title\":\"GABA-immunoreactive neurons and terminals in the cat periaqueductal gray matter: a light and electron microscopic study.\",\"authors\":\"Paolo Barbaresi\",\"doi\":\"10.1007/s11068-006-9440-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunocytochemical and electron microscopic methods were used to study the GABAergic innervation in adult cat periaqueductal gray matter (PAG). A mouse monoclonal antibody against gamma -aminobutyric acid (GABA) was used to visualize the inhibitory neuronal system of PAG. At light microscopy, GABA-immunopositive (GABA(IP)) neurons formed two longitudinally oriented columns in the dorsolateral and ventrolateral PAG that accounted for 36% of the neuronal population of both PAG columns; their perikaryal cross-sectional area was smaller than that of unlabeled (UNL) neurons found in the same PAG subdivisions. At electron microscopic level, patches of GABA immunoreactivity were readily detected in neuronal cell bodies, proximal and distal dendrites, axons and axon terminals. Approximately 35-36% of all terminals were GABA(IP); they established symmetric synapses with dendrites (84.72% of the sample in the dorsolateral PAG and 86.09% of the sample in the ventrolateral PAG) or with cell bodies (7-10% of the sample). Moreover, 49.15% of GABA(IP) axon terminals in the dorsolateral and 52.16% in the ventrolateral PAG established symmetric synapses with GABA(IP) dendrites. Immunopositive axon terminals and unlabeled terminals were also involved in the formation of a complex synaptic arrangment, i.e. clusters of synaptic terminals in close contact between them that were often observed in the PAG neuropil. Moreover, a fair number of axo-axonic synapses between GABA(IP) and/or UNL axon terminals were present in both PAG subdivisions. Several dendro-dendritic synapses between labeled and unlabeled dendrites were also observed in both PAG subdivisions. These results suggest that in the cat PAG there exist at least two classes of GABArgic neurons. The first class could exert a tonic control on PAG projecting neurons, the second could act on those GABAergic neurons that in turn keep PAG projecting neurons under tonic inhibition. The functional implications of this type of GABAergic synapse organization are discussed in relation to the dishinibitory processes that take place in the PAG.</p>\",\"PeriodicalId\":16494,\"journal\":{\"name\":\"Journal of Neurocytology\",\"volume\":\"34 6\",\"pages\":\"471-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11068-006-9440-7\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurocytology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11068-006-9440-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2006/8/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurocytology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11068-006-9440-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2006/8/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

采用免疫细胞化学和电镜方法研究了成年猫导水管周围灰质(PAG)中gaba能神经的分布。小鼠抗γ -氨基丁酸单克隆抗体(GABA)用于观察PAG的抑制神经元系统。光镜下,GABA免疫阳性(GABA(IP))神经元在PAG背外侧和腹外侧形成两个纵向定向的柱,占两个PAG柱神经元总数的36%;其核周横截面积小于相同PAG细分中未标记(UNL)的神经元。电镜下,神经元细胞体、近端和远端树突、轴突和轴突终末均可见GABA免疫反应性斑块。大约35-36%的终端是GABA(IP);与树突(背外侧PAG占84.72%,腹外侧PAG占86.09%)或细胞体(7-10%)建立对称突触。此外,49.15%的GABA(IP)轴突末端在背外侧和52.16%的腹外侧PAG与GABA(IP)树突建立对称突触。免疫阳性的轴突末端和未标记的末端也参与了复杂突触排列的形成,即在PAG神经瘤中经常观察到的突触末端紧密接触的簇。此外,在两个PAG细分中,GABA(IP)和/或UNL轴突终端之间存在相当数量的轴-轴突突触。标记和未标记树突之间的几个树突-树突突触也在两种PAG细分中观察到。这些结果表明,在猫PAG中至少存在两类gabaric神经元。第一类可对PAG突起神经元施加强直控制,第二类可作用于gaba能神经元,使PAG突起神经元处于强直抑制状态。这种gaba能突触组织的功能含义与PAG中发生的抑制过程有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GABA-immunoreactive neurons and terminals in the cat periaqueductal gray matter: a light and electron microscopic study.

Immunocytochemical and electron microscopic methods were used to study the GABAergic innervation in adult cat periaqueductal gray matter (PAG). A mouse monoclonal antibody against gamma -aminobutyric acid (GABA) was used to visualize the inhibitory neuronal system of PAG. At light microscopy, GABA-immunopositive (GABA(IP)) neurons formed two longitudinally oriented columns in the dorsolateral and ventrolateral PAG that accounted for 36% of the neuronal population of both PAG columns; their perikaryal cross-sectional area was smaller than that of unlabeled (UNL) neurons found in the same PAG subdivisions. At electron microscopic level, patches of GABA immunoreactivity were readily detected in neuronal cell bodies, proximal and distal dendrites, axons and axon terminals. Approximately 35-36% of all terminals were GABA(IP); they established symmetric synapses with dendrites (84.72% of the sample in the dorsolateral PAG and 86.09% of the sample in the ventrolateral PAG) or with cell bodies (7-10% of the sample). Moreover, 49.15% of GABA(IP) axon terminals in the dorsolateral and 52.16% in the ventrolateral PAG established symmetric synapses with GABA(IP) dendrites. Immunopositive axon terminals and unlabeled terminals were also involved in the formation of a complex synaptic arrangment, i.e. clusters of synaptic terminals in close contact between them that were often observed in the PAG neuropil. Moreover, a fair number of axo-axonic synapses between GABA(IP) and/or UNL axon terminals were present in both PAG subdivisions. Several dendro-dendritic synapses between labeled and unlabeled dendrites were also observed in both PAG subdivisions. These results suggest that in the cat PAG there exist at least two classes of GABArgic neurons. The first class could exert a tonic control on PAG projecting neurons, the second could act on those GABAergic neurons that in turn keep PAG projecting neurons under tonic inhibition. The functional implications of this type of GABAergic synapse organization are discussed in relation to the dishinibitory processes that take place in the PAG.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信