倍增背景校正斑点微阵列,以提高再现性。

Dabao Zhang, Min Zhang, Martin T Wells
{"title":"倍增背景校正斑点微阵列,以提高再现性。","authors":"Dabao Zhang,&nbsp;Min Zhang,&nbsp;Martin T Wells","doi":"10.1017/S0016672306008196","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a simple approach, the multiplicative background correction, to solve a perplexing problem in spotted microarray data analysis: correcting the foreground intensities for the background noise, especially for spots with genes that are weakly expressed or not at all. The conventional approach, the additive background correction, directly subtracts the background intensities from foreground intensities. When the foreground intensities marginally dominate the background intensities, the additive background correction provides unreliable estimates of the differential gene expression levels and usually presents M-A plots with fishtails or fans. Unreliable additive background correction makes it preferable to ignore the background noise, which may increase the number of false positives. Based on the more realistic multiplicative assumption instead of the conventional additive assumption, we propose to logarithmically transform the intensity readings before the background correction, with the logarithmic transformation symmetrizing the skewed intensity readings. This approach not only precludes the fishtails and fans in the M-A plots, but provides highly reproducible background-corrected intensities for both strongly and weakly expressed genes. The superiority of the multiplicative background correction to the additive one as well as the no background correction is justified by publicly available self-hybridization datasets.</p>","PeriodicalId":12777,"journal":{"name":"Genetical research","volume":"87 3","pages":"195-206"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0016672306008196","citationCount":"11","resultStr":"{\"title\":\"Multiplicative background correction for spotted microarrays to improve reproducibility.\",\"authors\":\"Dabao Zhang,&nbsp;Min Zhang,&nbsp;Martin T Wells\",\"doi\":\"10.1017/S0016672306008196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a simple approach, the multiplicative background correction, to solve a perplexing problem in spotted microarray data analysis: correcting the foreground intensities for the background noise, especially for spots with genes that are weakly expressed or not at all. The conventional approach, the additive background correction, directly subtracts the background intensities from foreground intensities. When the foreground intensities marginally dominate the background intensities, the additive background correction provides unreliable estimates of the differential gene expression levels and usually presents M-A plots with fishtails or fans. Unreliable additive background correction makes it preferable to ignore the background noise, which may increase the number of false positives. Based on the more realistic multiplicative assumption instead of the conventional additive assumption, we propose to logarithmically transform the intensity readings before the background correction, with the logarithmic transformation symmetrizing the skewed intensity readings. This approach not only precludes the fishtails and fans in the M-A plots, but provides highly reproducible background-corrected intensities for both strongly and weakly expressed genes. The superiority of the multiplicative background correction to the additive one as well as the no background correction is justified by publicly available self-hybridization datasets.</p>\",\"PeriodicalId\":12777,\"journal\":{\"name\":\"Genetical research\",\"volume\":\"87 3\",\"pages\":\"195-206\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0016672306008196\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetical research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0016672306008196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetical research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0016672306008196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们提出了一种简单的方法,即乘法背景校正,以解决斑点微阵列数据分析中的一个令人困惑的问题:校正背景噪声的前景强度,特别是对于具有弱表达或根本不表达基因的斑点。传统的方法是加性背景校正,直接从前景强度中减去背景强度。当前景强度略高于背景强度时,加性背景校正对差异基因表达水平的估计不可靠,通常呈现带有鱼尾或扇形的M-A图。不可靠的加性背景校正使得忽略背景噪声更为可取,这可能会增加误报的数量。基于更现实的乘法假设,而不是传统的加性假设,我们提出在背景校正前对强度读数进行对数变换,使倾斜的强度读数对称。这种方法不仅排除了M-A图中的鱼尾和扇形,而且为强表达和弱表达的基因提供了高度可重复的背景校正强度。公开的自杂交数据集证明了乘法背景校正相对于加性背景校正和无背景校正的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicative background correction for spotted microarrays to improve reproducibility.

We propose a simple approach, the multiplicative background correction, to solve a perplexing problem in spotted microarray data analysis: correcting the foreground intensities for the background noise, especially for spots with genes that are weakly expressed or not at all. The conventional approach, the additive background correction, directly subtracts the background intensities from foreground intensities. When the foreground intensities marginally dominate the background intensities, the additive background correction provides unreliable estimates of the differential gene expression levels and usually presents M-A plots with fishtails or fans. Unreliable additive background correction makes it preferable to ignore the background noise, which may increase the number of false positives. Based on the more realistic multiplicative assumption instead of the conventional additive assumption, we propose to logarithmically transform the intensity readings before the background correction, with the logarithmic transformation symmetrizing the skewed intensity readings. This approach not only precludes the fishtails and fans in the M-A plots, but provides highly reproducible background-corrected intensities for both strongly and weakly expressed genes. The superiority of the multiplicative background correction to the additive one as well as the no background correction is justified by publicly available self-hybridization datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信