动脉的生长、各向异性和残余应力。

K Y Volokh, Y Lev
{"title":"动脉的生长、各向异性和残余应力。","authors":"K Y Volokh,&nbsp;Y Lev","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A simple phenomenological theory of tissue growth is used in order to demonstrate that volumetric growth combined with material anisotropy can lead to accumulation of residual stresses in arteries. The theory is applied to growth of a cylindrical blood vessel with the anisotropy moduli derived from experiments. It is shown that bending resultants are developed in the ring cross-section of the artery. These resultants may cause the ring opening or closing after cutting the artery in vitro as it is observed in experiments. It is emphasized that the mode of the arterial ring opening is affected by the parameters of anisotropy.</p>","PeriodicalId":87411,"journal":{"name":"Mechanics & chemistry of biosystems : MCB","volume":"2 1","pages":"27-40"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth, anisotropy, and residual stresses in arteries.\",\"authors\":\"K Y Volokh,&nbsp;Y Lev\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A simple phenomenological theory of tissue growth is used in order to demonstrate that volumetric growth combined with material anisotropy can lead to accumulation of residual stresses in arteries. The theory is applied to growth of a cylindrical blood vessel with the anisotropy moduli derived from experiments. It is shown that bending resultants are developed in the ring cross-section of the artery. These resultants may cause the ring opening or closing after cutting the artery in vitro as it is observed in experiments. It is emphasized that the mode of the arterial ring opening is affected by the parameters of anisotropy.</p>\",\"PeriodicalId\":87411,\"journal\":{\"name\":\"Mechanics & chemistry of biosystems : MCB\",\"volume\":\"2 1\",\"pages\":\"27-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics & chemistry of biosystems : MCB\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & chemistry of biosystems : MCB","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

组织生长的一个简单的现象学理论是为了证明体积增长结合材料各向异性可以导致残余应力在动脉的积累。利用实验得到的各向异性模量,将该理论应用于圆柱形血管的生长。结果表明,在动脉的环形截面上存在弯曲产物。这些结果可能导致环在体外切割动脉后打开或关闭,正如实验中观察到的那样。强调了各向异性参数对动脉环开口模式的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth, anisotropy, and residual stresses in arteries.

A simple phenomenological theory of tissue growth is used in order to demonstrate that volumetric growth combined with material anisotropy can lead to accumulation of residual stresses in arteries. The theory is applied to growth of a cylindrical blood vessel with the anisotropy moduli derived from experiments. It is shown that bending resultants are developed in the ring cross-section of the artery. These resultants may cause the ring opening or closing after cutting the artery in vitro as it is observed in experiments. It is emphasized that the mode of the arterial ring opening is affected by the parameters of anisotropy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信