涉及多模蛋白的机械转导:将力转化为生化信号。

Viola Vogel
{"title":"涉及多模蛋白的机械转导:将力转化为生化信号。","authors":"Viola Vogel","doi":"10.1146/annurev.biophys.35.040405.102013","DOIUrl":null,"url":null,"abstract":"<p><p>Cells can sense and transduce a broad range of mechanical forces into distinct sets of biochemical signals that ultimately regulate cellular processes, including adhesion, proliferation, differentiation, and apoptosis. Deciphering at the nanoscale the design principles by which sensory elements are integrated into structural protein motifs whose conformations can be switched mechanically is crucial to understand the process of transduction of force into biochemical signals that are then integrated to regulate mechanoresponsive pathways. While the major focus in the search for mechanosensory units has been on membrane proteins such as ion channels, integrins, and associated cytoplasmic complexes, a multimodular design of tandem repeats of various structural motifs is ubiquitously found among extracellular matrix proteins, as well as cell adhesion molecules, and among many intracellular players that physically link transmembrane proteins to the contractile cytoskeleton. Single-molecule studies have revealed an unexpected richness of mechanosensory motifs, including force-regulated conformational changes of loop-exposed molecular recognition sites, intermediate states in the unraveling pathway that might either expose cryptic binding or phosphorylation sites, or regions that display enzymatic activity only when unmasked by force. Insights into mechanochemical signal conversion principles will also affect various technological fields, from biotechnology to tissue engineering and drug development.</p>","PeriodicalId":8270,"journal":{"name":"Annual review of biophysics and biomolecular structure","volume":"35 ","pages":"459-88"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.biophys.35.040405.102013","citationCount":"425","resultStr":"{\"title\":\"Mechanotransduction involving multimodular proteins: converting force into biochemical signals.\",\"authors\":\"Viola Vogel\",\"doi\":\"10.1146/annurev.biophys.35.040405.102013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cells can sense and transduce a broad range of mechanical forces into distinct sets of biochemical signals that ultimately regulate cellular processes, including adhesion, proliferation, differentiation, and apoptosis. Deciphering at the nanoscale the design principles by which sensory elements are integrated into structural protein motifs whose conformations can be switched mechanically is crucial to understand the process of transduction of force into biochemical signals that are then integrated to regulate mechanoresponsive pathways. While the major focus in the search for mechanosensory units has been on membrane proteins such as ion channels, integrins, and associated cytoplasmic complexes, a multimodular design of tandem repeats of various structural motifs is ubiquitously found among extracellular matrix proteins, as well as cell adhesion molecules, and among many intracellular players that physically link transmembrane proteins to the contractile cytoskeleton. Single-molecule studies have revealed an unexpected richness of mechanosensory motifs, including force-regulated conformational changes of loop-exposed molecular recognition sites, intermediate states in the unraveling pathway that might either expose cryptic binding or phosphorylation sites, or regions that display enzymatic activity only when unmasked by force. Insights into mechanochemical signal conversion principles will also affect various technological fields, from biotechnology to tissue engineering and drug development.</p>\",\"PeriodicalId\":8270,\"journal\":{\"name\":\"Annual review of biophysics and biomolecular structure\",\"volume\":\"35 \",\"pages\":\"459-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev.biophys.35.040405.102013\",\"citationCount\":\"425\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of biophysics and biomolecular structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev.biophys.35.040405.102013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biophysics and biomolecular structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.biophys.35.040405.102013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 425

摘要

细胞可以感知并将广泛的机械力转化为不同的生化信号,最终调节细胞过程,包括粘附、增殖、分化和凋亡。在纳米尺度上破译将感觉元件整合到结构蛋白基序(结构蛋白基序的构象可以机械地切换)的设计原理,对于理解力转导成生化信号的过程至关重要,而生化信号随后被整合以调节机械反应途径。虽然机械感觉单位的研究主要集中在膜蛋白上,如离子通道、整合素和相关的细胞质复合物,但在细胞外基质蛋白、细胞粘附分子和许多将跨膜蛋白物理连接到收缩细胞骨架的细胞内参与者中,普遍发现了各种结构基元串联重复的多模块设计。单分子研究揭示了意想不到的机械感觉基元的丰富性,包括环暴露的分子识别位点的力调节构象变化,解开途径中的中间状态,可能暴露隐结合或磷酸化位点,或只有在被力揭开时才显示酶活性的区域。对机械化学信号转换原理的见解也将影响从生物技术到组织工程和药物开发的各个技术领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanotransduction involving multimodular proteins: converting force into biochemical signals.

Cells can sense and transduce a broad range of mechanical forces into distinct sets of biochemical signals that ultimately regulate cellular processes, including adhesion, proliferation, differentiation, and apoptosis. Deciphering at the nanoscale the design principles by which sensory elements are integrated into structural protein motifs whose conformations can be switched mechanically is crucial to understand the process of transduction of force into biochemical signals that are then integrated to regulate mechanoresponsive pathways. While the major focus in the search for mechanosensory units has been on membrane proteins such as ion channels, integrins, and associated cytoplasmic complexes, a multimodular design of tandem repeats of various structural motifs is ubiquitously found among extracellular matrix proteins, as well as cell adhesion molecules, and among many intracellular players that physically link transmembrane proteins to the contractile cytoskeleton. Single-molecule studies have revealed an unexpected richness of mechanosensory motifs, including force-regulated conformational changes of loop-exposed molecular recognition sites, intermediate states in the unraveling pathway that might either expose cryptic binding or phosphorylation sites, or regions that display enzymatic activity only when unmasked by force. Insights into mechanochemical signal conversion principles will also affect various technological fields, from biotechnology to tissue engineering and drug development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信