细胞骨架动力学的定量荧光散斑显微镜。

Gaudenz Danuser, Clare M Waterman-Storer
{"title":"细胞骨架动力学的定量荧光散斑显微镜。","authors":"Gaudenz Danuser,&nbsp;Clare M Waterman-Storer","doi":"10.1146/annurev.biophys.35.040405.102114","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescent speckle microscopy (FSM) is a technology used to analyze the dynamics of macromolecular assemblies in vivo and in vitro. Speckle formation by random association of fluorophores with a macromolecular structure was originally discovered for microtubules. Since then FSM has been expanded to study other cytoskeleton and cytoskeleton-binding proteins. Specialized software has been developed to convert the stochastic speckle image signal into spatiotemporal maps of polymer transport and turnover in living cells. These maps serve as a unique quantitative readout of the dynamic steady state of the cytoskeleton and its responses to molecular and genetic interventions, allowing a systematic study of the mechanisms of cytoskeleton regulation and its effect on cell function. Here, we explain the principles of FSM imaging and signal analysis, outline the biological questions and corresponding methodological advances that have led to the current state of FSM, and give a glimpse of new FSM modalities under development.</p>","PeriodicalId":8270,"journal":{"name":"Annual review of biophysics and biomolecular structure","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.biophys.35.040405.102114","citationCount":"210","resultStr":"{\"title\":\"Quantitative fluorescent speckle microscopy of cytoskeleton dynamics.\",\"authors\":\"Gaudenz Danuser,&nbsp;Clare M Waterman-Storer\",\"doi\":\"10.1146/annurev.biophys.35.040405.102114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorescent speckle microscopy (FSM) is a technology used to analyze the dynamics of macromolecular assemblies in vivo and in vitro. Speckle formation by random association of fluorophores with a macromolecular structure was originally discovered for microtubules. Since then FSM has been expanded to study other cytoskeleton and cytoskeleton-binding proteins. Specialized software has been developed to convert the stochastic speckle image signal into spatiotemporal maps of polymer transport and turnover in living cells. These maps serve as a unique quantitative readout of the dynamic steady state of the cytoskeleton and its responses to molecular and genetic interventions, allowing a systematic study of the mechanisms of cytoskeleton regulation and its effect on cell function. Here, we explain the principles of FSM imaging and signal analysis, outline the biological questions and corresponding methodological advances that have led to the current state of FSM, and give a glimpse of new FSM modalities under development.</p>\",\"PeriodicalId\":8270,\"journal\":{\"name\":\"Annual review of biophysics and biomolecular structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev.biophys.35.040405.102114\",\"citationCount\":\"210\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of biophysics and biomolecular structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev.biophys.35.040405.102114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biophysics and biomolecular structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.biophys.35.040405.102114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 210

摘要

荧光散斑显微镜(FSM)是一种用于分析体内和体外大分子组装动力学的技术。由荧光团与大分子结构随机结合形成的斑点最初是在微管中发现的。从那时起,FSM已经扩展到研究其他细胞骨架和细胞骨架结合蛋白。已经开发出专门的软件来将随机散斑图像信号转换为活细胞中聚合物运输和周转的时空图。这些图谱作为细胞骨架动态稳定状态及其对分子和遗传干预反应的独特定量读数,允许系统研究细胞骨架调节机制及其对细胞功能的影响。在这里,我们解释了FSM成像和信号分析的原理,概述了导致FSM当前状态的生物学问题和相应的方法进展,并简要介绍了正在开发的新FSM模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative fluorescent speckle microscopy of cytoskeleton dynamics.

Fluorescent speckle microscopy (FSM) is a technology used to analyze the dynamics of macromolecular assemblies in vivo and in vitro. Speckle formation by random association of fluorophores with a macromolecular structure was originally discovered for microtubules. Since then FSM has been expanded to study other cytoskeleton and cytoskeleton-binding proteins. Specialized software has been developed to convert the stochastic speckle image signal into spatiotemporal maps of polymer transport and turnover in living cells. These maps serve as a unique quantitative readout of the dynamic steady state of the cytoskeleton and its responses to molecular and genetic interventions, allowing a systematic study of the mechanisms of cytoskeleton regulation and its effect on cell function. Here, we explain the principles of FSM imaging and signal analysis, outline the biological questions and corresponding methodological advances that have led to the current state of FSM, and give a glimpse of new FSM modalities under development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信