{"title":"氮化钽和氮化铌中局部结构的显著影响","authors":"Shinichi Kikkawa, Akira Hosono, Yuji Masubuchi","doi":"10.1016/j.progsolidstchem.2017.08.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Compounds that contain two types of anion are attracting attention as a new field of solid state chemistry. The nitride<span><span> anion is similar to the oxide anion in size and nature. They coordinate together to cations in oxynitrides to form characteristic local structures around them in a certain way. Special properties induced by the specific local structure have been observed in oxynitrides. </span>Ferroelectricity<span><span> was identified in oxynitride perovskites, especially those of </span>tantalum, because the oxide and nitride anions form a polar ordered local crystal structure around Ta</span></span></span><sup>5+</sup> in the 5d<sup>0</sup><span><span> electron configuration. The critical current density in superconductivity<span> was enhanced by the formation of clusters in niobium oxynitrides with the rocksalt-type structure. Main group elements doped into the niobium oxynitrides, especially </span></span>silicon, are coordinated mainly by oxides with some amount of nitrides to form silicon oxide-like clusters. The niobium in the oxynitride has some 4d electrons to maintain the superconductivity in the niobium oxynitride host. Here, the preparation, crystal structure and properties of oxynitrides formed with tantalum and niobium are reviewed.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"51 ","pages":"Pages 71-80"},"PeriodicalIF":9.1000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2017.08.001","citationCount":"7","resultStr":"{\"title\":\"Remarkable effects of local structure in tantalum and niobium oxynitrides\",\"authors\":\"Shinichi Kikkawa, Akira Hosono, Yuji Masubuchi\",\"doi\":\"10.1016/j.progsolidstchem.2017.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Compounds that contain two types of anion are attracting attention as a new field of solid state chemistry. The nitride<span><span> anion is similar to the oxide anion in size and nature. They coordinate together to cations in oxynitrides to form characteristic local structures around them in a certain way. Special properties induced by the specific local structure have been observed in oxynitrides. </span>Ferroelectricity<span><span> was identified in oxynitride perovskites, especially those of </span>tantalum, because the oxide and nitride anions form a polar ordered local crystal structure around Ta</span></span></span><sup>5+</sup> in the 5d<sup>0</sup><span><span> electron configuration. The critical current density in superconductivity<span> was enhanced by the formation of clusters in niobium oxynitrides with the rocksalt-type structure. Main group elements doped into the niobium oxynitrides, especially </span></span>silicon, are coordinated mainly by oxides with some amount of nitrides to form silicon oxide-like clusters. The niobium in the oxynitride has some 4d electrons to maintain the superconductivity in the niobium oxynitride host. Here, the preparation, crystal structure and properties of oxynitrides formed with tantalum and niobium are reviewed.</span></p></div>\",\"PeriodicalId\":415,\"journal\":{\"name\":\"Progress in Solid State Chemistry\",\"volume\":\"51 \",\"pages\":\"Pages 71-80\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2017.08.001\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079678617300134\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678617300134","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Remarkable effects of local structure in tantalum and niobium oxynitrides
Compounds that contain two types of anion are attracting attention as a new field of solid state chemistry. The nitride anion is similar to the oxide anion in size and nature. They coordinate together to cations in oxynitrides to form characteristic local structures around them in a certain way. Special properties induced by the specific local structure have been observed in oxynitrides. Ferroelectricity was identified in oxynitride perovskites, especially those of tantalum, because the oxide and nitride anions form a polar ordered local crystal structure around Ta5+ in the 5d0 electron configuration. The critical current density in superconductivity was enhanced by the formation of clusters in niobium oxynitrides with the rocksalt-type structure. Main group elements doped into the niobium oxynitrides, especially silicon, are coordinated mainly by oxides with some amount of nitrides to form silicon oxide-like clusters. The niobium in the oxynitride has some 4d electrons to maintain the superconductivity in the niobium oxynitride host. Here, the preparation, crystal structure and properties of oxynitrides formed with tantalum and niobium are reviewed.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.