A Gugssa, C M Lee, S Gebru, D Desta, S Murray, B Baccetti, W Anderson
{"title":"肌锥虫与脾源黏附成纤维细胞共培养:可能通过连接子转移小分子。","authors":"A Gugssa, C M Lee, S Gebru, D Desta, S Murray, B Baccetti, W Anderson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Trypanosoma musculi, a protozoan parasite specific to mouse, was cultured in vitro in the presence of spleen-derived adherent cells. T. musculi co-cultured with adherent cells survived and proliferated indefinitely as long as cellular contact was retained. Scanning and transmission electron microscopy confirmed intimate membrane-to-membrane contact between the adherent cells and parasites. Cellular contact, therefore, seemed to be essential for trypanosomal survival and growth. Immunocytochemical studies demonstrated intense fibroblast growth factor (FGF) activity in adherent cells, and FGFR-2 in associated trypanosomes. BioPorter Lucifer yellow protein delivery reagent studies demonstrated that Lucifer yellow transfected into fibroblast was incorporated into associated trypanosomes. The results suggest the existence of viable channels reminiscent of gap junctions between associated cells. Such transfer of low molecular weight molecules might represent antiapoptotic metabolic factors that support survival of adherent trypanosomes in vitro. Immunocytochemical studies also detected connexin-32 and connexin-43 in the cytoplasm of fibroblasts and associated trypanosomes, however, restriction of connexons to trypanosome/fibroblast adherent sites was not observed. Western blots confirmed the presence of connexin protein molecules in trypanosomes.</p>","PeriodicalId":17136,"journal":{"name":"Journal of submicroscopic cytology and pathology","volume":"37 3-4","pages":"223-9"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-culture of Trypanosoma musculi with spleen-derived adherent fibroblasts: possible transfer of small molecules via connexons.\",\"authors\":\"A Gugssa, C M Lee, S Gebru, D Desta, S Murray, B Baccetti, W Anderson\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trypanosoma musculi, a protozoan parasite specific to mouse, was cultured in vitro in the presence of spleen-derived adherent cells. T. musculi co-cultured with adherent cells survived and proliferated indefinitely as long as cellular contact was retained. Scanning and transmission electron microscopy confirmed intimate membrane-to-membrane contact between the adherent cells and parasites. Cellular contact, therefore, seemed to be essential for trypanosomal survival and growth. Immunocytochemical studies demonstrated intense fibroblast growth factor (FGF) activity in adherent cells, and FGFR-2 in associated trypanosomes. BioPorter Lucifer yellow protein delivery reagent studies demonstrated that Lucifer yellow transfected into fibroblast was incorporated into associated trypanosomes. The results suggest the existence of viable channels reminiscent of gap junctions between associated cells. Such transfer of low molecular weight molecules might represent antiapoptotic metabolic factors that support survival of adherent trypanosomes in vitro. Immunocytochemical studies also detected connexin-32 and connexin-43 in the cytoplasm of fibroblasts and associated trypanosomes, however, restriction of connexons to trypanosome/fibroblast adherent sites was not observed. Western blots confirmed the presence of connexin protein molecules in trypanosomes.</p>\",\"PeriodicalId\":17136,\"journal\":{\"name\":\"Journal of submicroscopic cytology and pathology\",\"volume\":\"37 3-4\",\"pages\":\"223-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of submicroscopic cytology and pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of submicroscopic cytology and pathology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Co-culture of Trypanosoma musculi with spleen-derived adherent fibroblasts: possible transfer of small molecules via connexons.
Trypanosoma musculi, a protozoan parasite specific to mouse, was cultured in vitro in the presence of spleen-derived adherent cells. T. musculi co-cultured with adherent cells survived and proliferated indefinitely as long as cellular contact was retained. Scanning and transmission electron microscopy confirmed intimate membrane-to-membrane contact between the adherent cells and parasites. Cellular contact, therefore, seemed to be essential for trypanosomal survival and growth. Immunocytochemical studies demonstrated intense fibroblast growth factor (FGF) activity in adherent cells, and FGFR-2 in associated trypanosomes. BioPorter Lucifer yellow protein delivery reagent studies demonstrated that Lucifer yellow transfected into fibroblast was incorporated into associated trypanosomes. The results suggest the existence of viable channels reminiscent of gap junctions between associated cells. Such transfer of low molecular weight molecules might represent antiapoptotic metabolic factors that support survival of adherent trypanosomes in vitro. Immunocytochemical studies also detected connexin-32 and connexin-43 in the cytoplasm of fibroblasts and associated trypanosomes, however, restriction of connexons to trypanosome/fibroblast adherent sites was not observed. Western blots confirmed the presence of connexin protein molecules in trypanosomes.