Sebastian Stockerl , Daniel Gutiérrez , Olga García Mancheño
{"title":"分子内对映选择性氧化ch键功能化的click -binol-磷酸催化剂","authors":"Sebastian Stockerl , Daniel Gutiérrez , Olga García Mancheño","doi":"10.1016/j.molcata.2016.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>Counteranion-catalysis represents an appealing but challenging approach for the development of enantioselective oxidative C<img>H bond functionalization reactions. In this work, a new family of 3,3′-triazolyl BINOL-derived phosphoric acids was synthesized and employed in the intramolecular asymmetric C<img>H bond functionalization of <em>N</em>-aryl substituted tetrahydroisoquinolines. As previously reported with related structures, the presence of the triazole groups on the catalysts was key to attain enantioselectivity. Our study also shows the importance of choosing the appropriate regioisomeric triazole groups at the BINOL backbone to achieve a more efficient chirality transfer. Moderate enantiomeric ratios were obtained with the <em>N</em>-benzamide substrates, whereas the change of the nature of the nucleophile fragment was translated to a dramatic loss of the enantioselectivity. Therefore, it can be foreseen that there is a need for designing further superior catalyst structures to develop future counter-anion organocatalyzed asymmetric C<img>H bond functionalization reactions.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 572-585"},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.09.006","citationCount":"7","resultStr":"{\"title\":\"Click-binol-phosphoric acid catalysts in intramolecular enantioselective oxidative CH-bond functionalization\",\"authors\":\"Sebastian Stockerl , Daniel Gutiérrez , Olga García Mancheño\",\"doi\":\"10.1016/j.molcata.2016.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Counteranion-catalysis represents an appealing but challenging approach for the development of enantioselective oxidative C<img>H bond functionalization reactions. In this work, a new family of 3,3′-triazolyl BINOL-derived phosphoric acids was synthesized and employed in the intramolecular asymmetric C<img>H bond functionalization of <em>N</em>-aryl substituted tetrahydroisoquinolines. As previously reported with related structures, the presence of the triazole groups on the catalysts was key to attain enantioselectivity. Our study also shows the importance of choosing the appropriate regioisomeric triazole groups at the BINOL backbone to achieve a more efficient chirality transfer. Moderate enantiomeric ratios were obtained with the <em>N</em>-benzamide substrates, whereas the change of the nature of the nucleophile fragment was translated to a dramatic loss of the enantioselectivity. Therefore, it can be foreseen that there is a need for designing further superior catalyst structures to develop future counter-anion organocatalyzed asymmetric C<img>H bond functionalization reactions.</p></div>\",\"PeriodicalId\":370,\"journal\":{\"name\":\"Journal of Molecular Catalysis A: Chemical\",\"volume\":\"426 \",\"pages\":\"Pages 572-585\"},\"PeriodicalIF\":5.0620,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcata.2016.09.006\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis A: Chemical\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381116916303788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381116916303788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Click-binol-phosphoric acid catalysts in intramolecular enantioselective oxidative CH-bond functionalization
Counteranion-catalysis represents an appealing but challenging approach for the development of enantioselective oxidative CH bond functionalization reactions. In this work, a new family of 3,3′-triazolyl BINOL-derived phosphoric acids was synthesized and employed in the intramolecular asymmetric CH bond functionalization of N-aryl substituted tetrahydroisoquinolines. As previously reported with related structures, the presence of the triazole groups on the catalysts was key to attain enantioselectivity. Our study also shows the importance of choosing the appropriate regioisomeric triazole groups at the BINOL backbone to achieve a more efficient chirality transfer. Moderate enantiomeric ratios were obtained with the N-benzamide substrates, whereas the change of the nature of the nucleophile fragment was translated to a dramatic loss of the enantioselectivity. Therefore, it can be foreseen that there is a need for designing further superior catalyst structures to develop future counter-anion organocatalyzed asymmetric CH bond functionalization reactions.
期刊介绍:
The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.