Mathew B. Potts , Seong-Eun Koh , William D. Whetstone , Breset A. Walker , Tomoko Yoneyama , Catherine P. Claus , Hovhannes M. Manvelyan , Linda J. Noble-Haeusslein
{"title":"未成熟脑的创伤性损伤:炎症、氧化损伤和铁介导的损伤作为潜在的治疗靶点","authors":"Mathew B. Potts , Seong-Eun Koh , William D. Whetstone , Breset A. Walker , Tomoko Yoneyama , Catherine P. Claus , Hovhannes M. Manvelyan , Linda J. Noble-Haeusslein","doi":"10.1016/j.nurx.2006.01.006","DOIUrl":null,"url":null,"abstract":"<div><p>Traumatic brain injury (TBI) is the leading cause of morbidity and mortality among children and both clinical and experimental data reveal that the immature brain is unique in its response and vulnerability to TBI compared to the adult brain. Current therapies for pediatric TBI focus on physiologic derangements and are based primarily on adult data. However, it is now evident that secondary biochemical perturbations play an important role in the pathobiology of pediatric TBI and may provide specific therapeutic targets for the treatment of the head-injured child. In this review, we discuss three specific components of the secondary pathogenesis of pediatric TBI – inflammation, oxidative injury, and iron-induced damage – and potential therapeutic strategies associated with each. The inflammatory response in the immature brain is more robust than in the adult and characterized by greater disruption of the blood-brain barrier and elaboration of cytokines. The immature brain also has a muted response to oxidative stress compared to the adult due to inadequate expression of certain antioxidant molecules. In addition, the developing brain is less able to detoxify free iron after TBI-induced hemorrhage and cell death. These processes thus provide potential therapeutic targets that may be tailored to pediatric TBI, including anti-inflammatory agents such as minocycline, antioxidants such as glutathione peroxidase, and the iron chelator deferoxamine.</p></div>","PeriodicalId":87195,"journal":{"name":"NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics","volume":"3 2","pages":"Pages 143-153"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nurx.2006.01.006","citationCount":"130","resultStr":"{\"title\":\"Traumatic Injury to the Immature Brain: Inflammation, Oxidative Injury, and Iron-Mediated Damage as Potential Therapeutic Targets\",\"authors\":\"Mathew B. Potts , Seong-Eun Koh , William D. Whetstone , Breset A. Walker , Tomoko Yoneyama , Catherine P. Claus , Hovhannes M. Manvelyan , Linda J. Noble-Haeusslein\",\"doi\":\"10.1016/j.nurx.2006.01.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traumatic brain injury (TBI) is the leading cause of morbidity and mortality among children and both clinical and experimental data reveal that the immature brain is unique in its response and vulnerability to TBI compared to the adult brain. Current therapies for pediatric TBI focus on physiologic derangements and are based primarily on adult data. However, it is now evident that secondary biochemical perturbations play an important role in the pathobiology of pediatric TBI and may provide specific therapeutic targets for the treatment of the head-injured child. In this review, we discuss three specific components of the secondary pathogenesis of pediatric TBI – inflammation, oxidative injury, and iron-induced damage – and potential therapeutic strategies associated with each. The inflammatory response in the immature brain is more robust than in the adult and characterized by greater disruption of the blood-brain barrier and elaboration of cytokines. The immature brain also has a muted response to oxidative stress compared to the adult due to inadequate expression of certain antioxidant molecules. In addition, the developing brain is less able to detoxify free iron after TBI-induced hemorrhage and cell death. These processes thus provide potential therapeutic targets that may be tailored to pediatric TBI, including anti-inflammatory agents such as minocycline, antioxidants such as glutathione peroxidase, and the iron chelator deferoxamine.</p></div>\",\"PeriodicalId\":87195,\"journal\":{\"name\":\"NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics\",\"volume\":\"3 2\",\"pages\":\"Pages 143-153\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.nurx.2006.01.006\",\"citationCount\":\"130\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1545534306000186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1545534306000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Traumatic Injury to the Immature Brain: Inflammation, Oxidative Injury, and Iron-Mediated Damage as Potential Therapeutic Targets
Traumatic brain injury (TBI) is the leading cause of morbidity and mortality among children and both clinical and experimental data reveal that the immature brain is unique in its response and vulnerability to TBI compared to the adult brain. Current therapies for pediatric TBI focus on physiologic derangements and are based primarily on adult data. However, it is now evident that secondary biochemical perturbations play an important role in the pathobiology of pediatric TBI and may provide specific therapeutic targets for the treatment of the head-injured child. In this review, we discuss three specific components of the secondary pathogenesis of pediatric TBI – inflammation, oxidative injury, and iron-induced damage – and potential therapeutic strategies associated with each. The inflammatory response in the immature brain is more robust than in the adult and characterized by greater disruption of the blood-brain barrier and elaboration of cytokines. The immature brain also has a muted response to oxidative stress compared to the adult due to inadequate expression of certain antioxidant molecules. In addition, the developing brain is less able to detoxify free iron after TBI-induced hemorrhage and cell death. These processes thus provide potential therapeutic targets that may be tailored to pediatric TBI, including anti-inflammatory agents such as minocycline, antioxidants such as glutathione peroxidase, and the iron chelator deferoxamine.