基于生物基函数神经网络和决策树的信号肽预测。

Ateesh Sidhu, Zheng Rong Yang
{"title":"基于生物基函数神经网络和决策树的信号肽预测。","authors":"Ateesh Sidhu,&nbsp;Zheng Rong Yang","doi":"10.2165/00822942-200605010-00002","DOIUrl":null,"url":null,"abstract":"<p><p>Signal peptide identification is of immense importance in drug design. Accurate identification of signal peptides is the first critical step to be able to change the direction of the targeting proteins and use the designed drug to target a specific organelle to correct a defect. Because experimental identification is the most accurate method, but is expensive and time-consuming, an efficient and affordable automated system is of great interest. In this article, we propose using an adapted neural network, called a bio-basis function neural network, and decision trees for predicting signal peptides. The bio-basis function neural network model and decision trees achieved 97.16% and 97.63% accuracy respectively, demonstrating that the methods work well for the prediction of signal peptides. Moreover, decision trees revealed that position P(1'), which is important in forming signal peptides, most commonly comprises either leucine or alanine. This concurs with the (P(3)-P(1)-P(1')) coupling model.</p>","PeriodicalId":87049,"journal":{"name":"Applied bioinformatics","volume":"5 1","pages":"13-9"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2165/00822942-200605010-00002","citationCount":"13","resultStr":"{\"title\":\"Prediction of signal peptides using bio-basis function neural networks and decision trees.\",\"authors\":\"Ateesh Sidhu,&nbsp;Zheng Rong Yang\",\"doi\":\"10.2165/00822942-200605010-00002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Signal peptide identification is of immense importance in drug design. Accurate identification of signal peptides is the first critical step to be able to change the direction of the targeting proteins and use the designed drug to target a specific organelle to correct a defect. Because experimental identification is the most accurate method, but is expensive and time-consuming, an efficient and affordable automated system is of great interest. In this article, we propose using an adapted neural network, called a bio-basis function neural network, and decision trees for predicting signal peptides. The bio-basis function neural network model and decision trees achieved 97.16% and 97.63% accuracy respectively, demonstrating that the methods work well for the prediction of signal peptides. Moreover, decision trees revealed that position P(1'), which is important in forming signal peptides, most commonly comprises either leucine or alanine. This concurs with the (P(3)-P(1)-P(1')) coupling model.</p>\",\"PeriodicalId\":87049,\"journal\":{\"name\":\"Applied bioinformatics\",\"volume\":\"5 1\",\"pages\":\"13-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2165/00822942-200605010-00002\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2165/00822942-200605010-00002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2165/00822942-200605010-00002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

信号肽识别在药物设计中具有重要意义。准确识别信号肽是能够改变靶向蛋白方向并使用设计的药物靶向特定细胞器以纠正缺陷的第一个关键步骤。由于实验鉴定是最准确的方法,但昂贵和耗时,一个高效和负担得起的自动化系统是极大的兴趣。在本文中,我们建议使用一种自适应神经网络,称为生物基函数神经网络和决策树来预测信号肽。生物基函数神经网络模型和决策树模型的准确率分别达到97.16%和97.63%,表明该方法能够很好地预测信号肽。此外,决策树显示,在形成信号肽中起重要作用的位置P(1’)通常由亮氨酸或丙氨酸组成。这与(P(3)-P(1)-P(1'))耦合模型一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of signal peptides using bio-basis function neural networks and decision trees.

Signal peptide identification is of immense importance in drug design. Accurate identification of signal peptides is the first critical step to be able to change the direction of the targeting proteins and use the designed drug to target a specific organelle to correct a defect. Because experimental identification is the most accurate method, but is expensive and time-consuming, an efficient and affordable automated system is of great interest. In this article, we propose using an adapted neural network, called a bio-basis function neural network, and decision trees for predicting signal peptides. The bio-basis function neural network model and decision trees achieved 97.16% and 97.63% accuracy respectively, demonstrating that the methods work well for the prediction of signal peptides. Moreover, decision trees revealed that position P(1'), which is important in forming signal peptides, most commonly comprises either leucine or alanine. This concurs with the (P(3)-P(1)-P(1')) coupling model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信