{"title":"基于生物基函数神经网络和决策树的信号肽预测。","authors":"Ateesh Sidhu, Zheng Rong Yang","doi":"10.2165/00822942-200605010-00002","DOIUrl":null,"url":null,"abstract":"<p><p>Signal peptide identification is of immense importance in drug design. Accurate identification of signal peptides is the first critical step to be able to change the direction of the targeting proteins and use the designed drug to target a specific organelle to correct a defect. Because experimental identification is the most accurate method, but is expensive and time-consuming, an efficient and affordable automated system is of great interest. In this article, we propose using an adapted neural network, called a bio-basis function neural network, and decision trees for predicting signal peptides. The bio-basis function neural network model and decision trees achieved 97.16% and 97.63% accuracy respectively, demonstrating that the methods work well for the prediction of signal peptides. Moreover, decision trees revealed that position P(1'), which is important in forming signal peptides, most commonly comprises either leucine or alanine. This concurs with the (P(3)-P(1)-P(1')) coupling model.</p>","PeriodicalId":87049,"journal":{"name":"Applied bioinformatics","volume":"5 1","pages":"13-9"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2165/00822942-200605010-00002","citationCount":"13","resultStr":"{\"title\":\"Prediction of signal peptides using bio-basis function neural networks and decision trees.\",\"authors\":\"Ateesh Sidhu, Zheng Rong Yang\",\"doi\":\"10.2165/00822942-200605010-00002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Signal peptide identification is of immense importance in drug design. Accurate identification of signal peptides is the first critical step to be able to change the direction of the targeting proteins and use the designed drug to target a specific organelle to correct a defect. Because experimental identification is the most accurate method, but is expensive and time-consuming, an efficient and affordable automated system is of great interest. In this article, we propose using an adapted neural network, called a bio-basis function neural network, and decision trees for predicting signal peptides. The bio-basis function neural network model and decision trees achieved 97.16% and 97.63% accuracy respectively, demonstrating that the methods work well for the prediction of signal peptides. Moreover, decision trees revealed that position P(1'), which is important in forming signal peptides, most commonly comprises either leucine or alanine. This concurs with the (P(3)-P(1)-P(1')) coupling model.</p>\",\"PeriodicalId\":87049,\"journal\":{\"name\":\"Applied bioinformatics\",\"volume\":\"5 1\",\"pages\":\"13-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2165/00822942-200605010-00002\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2165/00822942-200605010-00002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2165/00822942-200605010-00002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of signal peptides using bio-basis function neural networks and decision trees.
Signal peptide identification is of immense importance in drug design. Accurate identification of signal peptides is the first critical step to be able to change the direction of the targeting proteins and use the designed drug to target a specific organelle to correct a defect. Because experimental identification is the most accurate method, but is expensive and time-consuming, an efficient and affordable automated system is of great interest. In this article, we propose using an adapted neural network, called a bio-basis function neural network, and decision trees for predicting signal peptides. The bio-basis function neural network model and decision trees achieved 97.16% and 97.63% accuracy respectively, demonstrating that the methods work well for the prediction of signal peptides. Moreover, decision trees revealed that position P(1'), which is important in forming signal peptides, most commonly comprises either leucine or alanine. This concurs with the (P(3)-P(1)-P(1')) coupling model.