{"title":"[生境差异对红树伴生物种褐条鱼种群遗传结构的影响]。","authors":"Zhi-Hong Zhang, Tian Tang, Ren-Chao Zhou, Yu-Guo Wang, Shu-Guang Jian, Cai-Rong Zhong, Su-Hu Shi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic diversity and population genetic structure of Excoecaria agallocha, a typical mangrove associate species,were surveyed at divergent habitats (intertidal and inland). In general, intertidal populations had higher genetic diversity than inland populations. Genetic differentiation among intertidal populations (G(ST) = 0.191) were smaller than that among inland populations (G(ST) = 0.218), suggesting that gene flow via seed among intertidal populations were stronger. In an analysis of molecular variance (AMOVA), we found that 15.13% of the genetic variance could be explained by the differentiation between habitats, as compared to only 11.63% to geographical effects among five sits 181 -759 km distant from each other. This implies that markedly selection regimes result in habitat adaptation. Isolation-by-distance, Southwest Monsoon Current,China Coastal Current and genetic drift played important role in genetic differentiation of China population of Excoecaria agalocha.</p>","PeriodicalId":23770,"journal":{"name":"Yi chuan xue bao = Acta genetica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Effects of divergent habitat on genetic structure of population of Excoecaria agallocha, a mangrove associate].\",\"authors\":\"Zhi-Hong Zhang, Tian Tang, Ren-Chao Zhou, Yu-Guo Wang, Shu-Guang Jian, Cai-Rong Zhong, Su-Hu Shi\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetic diversity and population genetic structure of Excoecaria agallocha, a typical mangrove associate species,were surveyed at divergent habitats (intertidal and inland). In general, intertidal populations had higher genetic diversity than inland populations. Genetic differentiation among intertidal populations (G(ST) = 0.191) were smaller than that among inland populations (G(ST) = 0.218), suggesting that gene flow via seed among intertidal populations were stronger. In an analysis of molecular variance (AMOVA), we found that 15.13% of the genetic variance could be explained by the differentiation between habitats, as compared to only 11.63% to geographical effects among five sits 181 -759 km distant from each other. This implies that markedly selection regimes result in habitat adaptation. Isolation-by-distance, Southwest Monsoon Current,China Coastal Current and genetic drift played important role in genetic differentiation of China population of Excoecaria agalocha.</p>\",\"PeriodicalId\":23770,\"journal\":{\"name\":\"Yi chuan xue bao = Acta genetica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yi chuan xue bao = Acta genetica Sinica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yi chuan xue bao = Acta genetica Sinica","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Effects of divergent habitat on genetic structure of population of Excoecaria agallocha, a mangrove associate].
Genetic diversity and population genetic structure of Excoecaria agallocha, a typical mangrove associate species,were surveyed at divergent habitats (intertidal and inland). In general, intertidal populations had higher genetic diversity than inland populations. Genetic differentiation among intertidal populations (G(ST) = 0.191) were smaller than that among inland populations (G(ST) = 0.218), suggesting that gene flow via seed among intertidal populations were stronger. In an analysis of molecular variance (AMOVA), we found that 15.13% of the genetic variance could be explained by the differentiation between habitats, as compared to only 11.63% to geographical effects among five sits 181 -759 km distant from each other. This implies that markedly selection regimes result in habitat adaptation. Isolation-by-distance, Southwest Monsoon Current,China Coastal Current and genetic drift played important role in genetic differentiation of China population of Excoecaria agalocha.