基于系统搜索的最小偶极偶联确定蛋白质主链结构的算法分析。

Lincong Wang, Bruce Randall Donald
{"title":"基于系统搜索的最小偶极偶联确定蛋白质主链结构的算法分析。","authors":"Lincong Wang,&nbsp;Bruce Randall Donald","doi":"10.1109/csb.2004.1332445","DOIUrl":null,"url":null,"abstract":"<p><p>We have developed an ab initio algorithm for determining a protein backbone structure using global orientational restraints on internuclear vectors derived from residual dipolar couplings (RDCs) measured in one or two different aligning media by solution nuclear magnetic resonance (NMR) spectroscopy [14, 15]. Specifically, the conformation and global orientations of individual secondary structure elements are computed, independently, by an exact solution, systematic search-based minimization algorithm using only 2 RDCs per residue. The systematic search is built upon a quartic equation for computing, exactly and in constant time, the directions of an internuclear vector from RDCs, and linear or quadratic equations for computing the sines and cosines of backbone dihedral (phi, psi) angles from two vectors in consecutive peptide planes. In contrast to heuristic search such as simulated annealing (SA) or Monte-Carlo (MC) used by other NMR structure determination algorithms, our minimization algorithm can be analyzed rigorously in terms of expected algorithmic complexity and the coordinate precision of the protein structure as a function of error in the input data. The algorithm has been successfully applied to compute the backbone structures of three proteins using real NMR data.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"319-30"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2004.1332445","citationCount":"0","resultStr":"{\"title\":\"Analysis of a systematic search-based algorithm for determining protein backbone structure from a minimum number of residual dipolar couplings.\",\"authors\":\"Lincong Wang,&nbsp;Bruce Randall Donald\",\"doi\":\"10.1109/csb.2004.1332445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have developed an ab initio algorithm for determining a protein backbone structure using global orientational restraints on internuclear vectors derived from residual dipolar couplings (RDCs) measured in one or two different aligning media by solution nuclear magnetic resonance (NMR) spectroscopy [14, 15]. Specifically, the conformation and global orientations of individual secondary structure elements are computed, independently, by an exact solution, systematic search-based minimization algorithm using only 2 RDCs per residue. The systematic search is built upon a quartic equation for computing, exactly and in constant time, the directions of an internuclear vector from RDCs, and linear or quadratic equations for computing the sines and cosines of backbone dihedral (phi, psi) angles from two vectors in consecutive peptide planes. In contrast to heuristic search such as simulated annealing (SA) or Monte-Carlo (MC) used by other NMR structure determination algorithms, our minimization algorithm can be analyzed rigorously in terms of expected algorithmic complexity and the coordinate precision of the protein structure as a function of error in the input data. The algorithm has been successfully applied to compute the backbone structures of three proteins using real NMR data.</p>\",\"PeriodicalId\":87417,\"journal\":{\"name\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"volume\":\" \",\"pages\":\"319-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/csb.2004.1332445\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/csb.2004.1332445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2004.1332445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种从头算算法,通过溶液核磁共振(NMR)波谱法在一种或两种不同的对准介质中测量残余偶极耦合(rdc),利用核间矢量的全局取向约束来确定蛋白质骨架结构[14,15]。具体来说,通过精确解、基于系统搜索的最小化算法,每个残差仅使用2个rdc,独立计算单个二级结构元素的构象和全局取向。系统搜索建立在一个四次方程上,用于精确地和在恒定时间内计算来自rdc的核间矢量的方向,以及用于计算连续肽平面中两个矢量的主二面体(phi, psi)角的正弦和余弦的线性或二次方程。与其他核磁共振结构确定算法使用的启发式搜索(如模拟退火(SA)或蒙特卡罗(MC))相比,我们的最小化算法可以根据预期算法复杂性和蛋白质结构的坐标精度作为输入数据误差的函数进行严格分析。该算法已成功应用于三种蛋白质的核磁共振数据的主链结构计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of a systematic search-based algorithm for determining protein backbone structure from a minimum number of residual dipolar couplings.

We have developed an ab initio algorithm for determining a protein backbone structure using global orientational restraints on internuclear vectors derived from residual dipolar couplings (RDCs) measured in one or two different aligning media by solution nuclear magnetic resonance (NMR) spectroscopy [14, 15]. Specifically, the conformation and global orientations of individual secondary structure elements are computed, independently, by an exact solution, systematic search-based minimization algorithm using only 2 RDCs per residue. The systematic search is built upon a quartic equation for computing, exactly and in constant time, the directions of an internuclear vector from RDCs, and linear or quadratic equations for computing the sines and cosines of backbone dihedral (phi, psi) angles from two vectors in consecutive peptide planes. In contrast to heuristic search such as simulated annealing (SA) or Monte-Carlo (MC) used by other NMR structure determination algorithms, our minimization algorithm can be analyzed rigorously in terms of expected algorithmic complexity and the coordinate precision of the protein structure as a function of error in the input data. The algorithm has been successfully applied to compute the backbone structures of three proteins using real NMR data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信