一种用于基因表达数据中群体结构降维和提取的混合因子模型。

Ryo Yoshida, Tomoyuki Higuchi, Seiya Imoto
{"title":"一种用于基因表达数据中群体结构降维和提取的混合因子模型。","authors":"Ryo Yoshida,&nbsp;Tomoyuki Higuchi,&nbsp;Seiya Imoto","doi":"10.1109/csb.2004.1332429","DOIUrl":null,"url":null,"abstract":"<p><p>When we cluster tissue samples on the basis of genes, the number of observations to be grouped is much smaller than the dimension of feature vector. In such a case, the applicability of conventional model-based clustering is limited since the high dimensionality of feature vector leads to overfitting during the density estimation process. To overcome such difficulty, we attempt a methodological extension of the factor analysis. Our approach enables us not only to prevent from the occurrence of overfitting, but also to handle the issues of clustering, data compression and extracting a set of genes to be relevant to explain the group structure. The potential usefulness are demonstrated with the application to the leukemia dataset.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"161-72"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2004.1332429","citationCount":"0","resultStr":"{\"title\":\"A mixed factors model for dimension reduction and extraction of a group structure in gene expression data.\",\"authors\":\"Ryo Yoshida,&nbsp;Tomoyuki Higuchi,&nbsp;Seiya Imoto\",\"doi\":\"10.1109/csb.2004.1332429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When we cluster tissue samples on the basis of genes, the number of observations to be grouped is much smaller than the dimension of feature vector. In such a case, the applicability of conventional model-based clustering is limited since the high dimensionality of feature vector leads to overfitting during the density estimation process. To overcome such difficulty, we attempt a methodological extension of the factor analysis. Our approach enables us not only to prevent from the occurrence of overfitting, but also to handle the issues of clustering, data compression and extracting a set of genes to be relevant to explain the group structure. The potential usefulness are demonstrated with the application to the leukemia dataset.</p>\",\"PeriodicalId\":87417,\"journal\":{\"name\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"volume\":\" \",\"pages\":\"161-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/csb.2004.1332429\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/csb.2004.1332429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2004.1332429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当我们基于基因对组织样本进行聚类时,待分组的观察值的数量远远小于特征向量的维数。在这种情况下,传统的基于模型的聚类方法的适用性受到限制,因为特征向量的高维会导致密度估计过程中的过拟合。为了克服这一困难,我们尝试在方法上对因子分析进行扩展。我们的方法不仅可以防止过度拟合的发生,还可以处理聚类、数据压缩和提取一组相关基因来解释群体结构的问题。通过对白血病数据集的应用,证明了潜在的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mixed factors model for dimension reduction and extraction of a group structure in gene expression data.

When we cluster tissue samples on the basis of genes, the number of observations to be grouped is much smaller than the dimension of feature vector. In such a case, the applicability of conventional model-based clustering is limited since the high dimensionality of feature vector leads to overfitting during the density estimation process. To overcome such difficulty, we attempt a methodological extension of the factor analysis. Our approach enables us not only to prevent from the occurrence of overfitting, but also to handle the issues of clustering, data compression and extracting a set of genes to be relevant to explain the group structure. The potential usefulness are demonstrated with the application to the leukemia dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信