snp表达关联矩阵分析。

Anya Tsalenko, Roded Sharan, Hege Edvardsen, Vessela Kristensen, Anne-Lise Børresen-Dale, Amir Ben-Dor, Zohar Yakhini
{"title":"snp表达关联矩阵分析。","authors":"Anya Tsalenko,&nbsp;Roded Sharan,&nbsp;Hege Edvardsen,&nbsp;Vessela Kristensen,&nbsp;Anne-Lise Børresen-Dale,&nbsp;Amir Ben-Dor,&nbsp;Zohar Yakhini","doi":"10.1109/csb.2005.14","DOIUrl":null,"url":null,"abstract":"<p><p>High throughput expression profiling and genotyping technologies provide the means to study the genetic determinants of population variation in gene expression variation. In this paper we present a general statistical framework for the simultaneous analysis of gene expression data and SNP genotype data measured for the same cohort. The framework consists of methods to associate transcripts with SNPs affecting their expression, algorithms to detect subsets of transcripts that share significantly many associations with a subset of SNPs, and methods to visualize the identified relations. We apply our framework to SNP-expression data collected from 49 breast cancer patients. Our results demonstrate an overabundance of transcript-SNP associations in this data, and pinpoint SNPs that are potential master regulators of transcription. We also identify several statistically significant transcript-subsets with common putative regulators that fall into well-defined functional categories.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"135-43"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.14","citationCount":"4","resultStr":"{\"title\":\"Analysis of SNP-expression association matrices.\",\"authors\":\"Anya Tsalenko,&nbsp;Roded Sharan,&nbsp;Hege Edvardsen,&nbsp;Vessela Kristensen,&nbsp;Anne-Lise Børresen-Dale,&nbsp;Amir Ben-Dor,&nbsp;Zohar Yakhini\",\"doi\":\"10.1109/csb.2005.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High throughput expression profiling and genotyping technologies provide the means to study the genetic determinants of population variation in gene expression variation. In this paper we present a general statistical framework for the simultaneous analysis of gene expression data and SNP genotype data measured for the same cohort. The framework consists of methods to associate transcripts with SNPs affecting their expression, algorithms to detect subsets of transcripts that share significantly many associations with a subset of SNPs, and methods to visualize the identified relations. We apply our framework to SNP-expression data collected from 49 breast cancer patients. Our results demonstrate an overabundance of transcript-SNP associations in this data, and pinpoint SNPs that are potential master regulators of transcription. We also identify several statistically significant transcript-subsets with common putative regulators that fall into well-defined functional categories.</p>\",\"PeriodicalId\":87417,\"journal\":{\"name\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"volume\":\" \",\"pages\":\"135-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/csb.2005.14\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/csb.2005.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

高通量表达谱和基因分型技术为研究基因表达变异中群体变异的遗传决定因素提供了手段。在本文中,我们提出了一个通用的统计框架,用于同时分析同一队列的基因表达数据和SNP基因型数据。该框架包括将转录本与影响其表达的snp关联起来的方法,检测与snp子集共享许多关联的转录本子集的算法,以及可视化已识别关系的方法。我们将我们的框架应用于从49名乳腺癌患者中收集的snp表达数据。我们的研究结果表明,在这些数据中存在过多的转录- snp关联,并确定了潜在的转录主调控snp。我们还确定了几个具有统计意义的转录亚群,它们具有共同的假定调节因子,属于定义良好的功能类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of SNP-expression association matrices.

High throughput expression profiling and genotyping technologies provide the means to study the genetic determinants of population variation in gene expression variation. In this paper we present a general statistical framework for the simultaneous analysis of gene expression data and SNP genotype data measured for the same cohort. The framework consists of methods to associate transcripts with SNPs affecting their expression, algorithms to detect subsets of transcripts that share significantly many associations with a subset of SNPs, and methods to visualize the identified relations. We apply our framework to SNP-expression data collected from 49 breast cancer patients. Our results demonstrate an overabundance of transcript-SNP associations in this data, and pinpoint SNPs that are potential master regulators of transcription. We also identify several statistically significant transcript-subsets with common putative regulators that fall into well-defined functional categories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信