{"title":"螺旋跨膜蛋白的多尺度层次结构预测。","authors":"Zhong Chen, Ying Xu","doi":"10.1109/csb.2005.41","DOIUrl":null,"url":null,"abstract":"<p><p>As the first step toward a multi-scale, hierarchical computational approach for membrane protein structure prediction, the packing of transmembrane helices was modeled at the residual and atomistic levels, respectively. For predictions at the residual level, the helix-helix and helix-lipid interactions were described by a set of knowledge-based energy functions. For predictions at the atomistic level, CHARMM19 force field was employed. To facilitate the system to overcome energy barriers, Wang-Landau sampling was carried out by performing a random walk in the energy and conformational spaces. Native-like structures were predicted at both levels for 2- and 7-helix systems. Interestingly, consistent results were obtained from simulations at residual and atomistic levels for the same system, strongly suggesting the feasibility of a hierarchical approach for membrane structure prediction.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"203-7"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.41","citationCount":"0","resultStr":"{\"title\":\"Multi-scale hierarchical structure prediction of helical transmembrane proteins.\",\"authors\":\"Zhong Chen, Ying Xu\",\"doi\":\"10.1109/csb.2005.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the first step toward a multi-scale, hierarchical computational approach for membrane protein structure prediction, the packing of transmembrane helices was modeled at the residual and atomistic levels, respectively. For predictions at the residual level, the helix-helix and helix-lipid interactions were described by a set of knowledge-based energy functions. For predictions at the atomistic level, CHARMM19 force field was employed. To facilitate the system to overcome energy barriers, Wang-Landau sampling was carried out by performing a random walk in the energy and conformational spaces. Native-like structures were predicted at both levels for 2- and 7-helix systems. Interestingly, consistent results were obtained from simulations at residual and atomistic levels for the same system, strongly suggesting the feasibility of a hierarchical approach for membrane structure prediction.</p>\",\"PeriodicalId\":87417,\"journal\":{\"name\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"volume\":\" \",\"pages\":\"203-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/csb.2005.41\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/csb.2005.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-scale hierarchical structure prediction of helical transmembrane proteins.
As the first step toward a multi-scale, hierarchical computational approach for membrane protein structure prediction, the packing of transmembrane helices was modeled at the residual and atomistic levels, respectively. For predictions at the residual level, the helix-helix and helix-lipid interactions were described by a set of knowledge-based energy functions. For predictions at the atomistic level, CHARMM19 force field was employed. To facilitate the system to overcome energy barriers, Wang-Landau sampling was carried out by performing a random walk in the energy and conformational spaces. Native-like structures were predicted at both levels for 2- and 7-helix systems. Interestingly, consistent results were obtained from simulations at residual and atomistic levels for the same system, strongly suggesting the feasibility of a hierarchical approach for membrane structure prediction.