基因表达数据的倾向双聚类。

Jinze Liu, Jiong Wang, Wei Wang
{"title":"基因表达数据的倾向双聚类。","authors":"Jinze Liu,&nbsp;Jiong Wang,&nbsp;Wei Wang","doi":"10.1109/csb.2004.1332431","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of DNA microarray technologies has revolutionized the experimental study of gene expression. Clustering is the most popular approach of analyzing gene expression data and has indeed proven to be successful in many applications. Our work focuses on discovering a subset of genes which exhibit similar expression patterns along a subset of conditions in the gene expression matrix. Specifically, we are looking for the Order Preserving clusters (OPCluster), in each of which a subset of genes induce a similar linear ordering along a subset of conditions. The pioneering work of the OPSM model[3], which enforces the strict order shared by the genes in a cluster, is included in our model as a special case. Our model is more robust than OPSM because similarly expressed conditions are allowed to form order equivalent groups and no restriction is placed on the order within a group. Guided by our model, we design and implement a deterministic algorithm, namely OPCTree, to discover OP-Clusters. Experimental study on two real datasets demonstrates the effectiveness of the algorithm in the application of tissue classification and cell cycle identification. In addition, a large percentage of OP-Clusters exhibit significant enrichment of one or more function categories, which implies that OP-Clusters indeed carry significant biological relevance.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"182-93"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2004.1332431","citationCount":"0","resultStr":"{\"title\":\"Biclustering in gene expression data by tendency.\",\"authors\":\"Jinze Liu,&nbsp;Jiong Wang,&nbsp;Wei Wang\",\"doi\":\"10.1109/csb.2004.1332431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advent of DNA microarray technologies has revolutionized the experimental study of gene expression. Clustering is the most popular approach of analyzing gene expression data and has indeed proven to be successful in many applications. Our work focuses on discovering a subset of genes which exhibit similar expression patterns along a subset of conditions in the gene expression matrix. Specifically, we are looking for the Order Preserving clusters (OPCluster), in each of which a subset of genes induce a similar linear ordering along a subset of conditions. The pioneering work of the OPSM model[3], which enforces the strict order shared by the genes in a cluster, is included in our model as a special case. Our model is more robust than OPSM because similarly expressed conditions are allowed to form order equivalent groups and no restriction is placed on the order within a group. Guided by our model, we design and implement a deterministic algorithm, namely OPCTree, to discover OP-Clusters. Experimental study on two real datasets demonstrates the effectiveness of the algorithm in the application of tissue classification and cell cycle identification. In addition, a large percentage of OP-Clusters exhibit significant enrichment of one or more function categories, which implies that OP-Clusters indeed carry significant biological relevance.</p>\",\"PeriodicalId\":87417,\"journal\":{\"name\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"volume\":\" \",\"pages\":\"182-93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/csb.2004.1332431\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/csb.2004.1332431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2004.1332431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

DNA微阵列技术的出现彻底改变了基因表达的实验研究。聚类是分析基因表达数据最流行的方法,并且在许多应用中被证明是成功的。我们的工作重点是发现在基因表达矩阵中沿条件子集表现出相似表达模式的基因子集。具体来说,我们正在寻找保持顺序簇(OPCluster),在每个簇中,一个基因子集沿着一个条件子集诱导类似的线性排序。OPSM模型的开创性工作[3],强制集群中基因共享的严格顺序,作为一个特例被纳入我们的模型。我们的模型比OPSM更健壮,因为类似表达的条件允许形成顺序等效组,并且对组内的顺序没有限制。在该模型的指导下,我们设计并实现了一种确定性算法,即OPCTree来发现op -簇。在两个真实数据集上的实验研究证明了该算法在组织分类和细胞周期识别方面的有效性。此外,很大比例的op - cluster表现出一种或多种功能类别的显著富集,这意味着op - cluster确实具有重要的生物学相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biclustering in gene expression data by tendency.

The advent of DNA microarray technologies has revolutionized the experimental study of gene expression. Clustering is the most popular approach of analyzing gene expression data and has indeed proven to be successful in many applications. Our work focuses on discovering a subset of genes which exhibit similar expression patterns along a subset of conditions in the gene expression matrix. Specifically, we are looking for the Order Preserving clusters (OPCluster), in each of which a subset of genes induce a similar linear ordering along a subset of conditions. The pioneering work of the OPSM model[3], which enforces the strict order shared by the genes in a cluster, is included in our model as a special case. Our model is more robust than OPSM because similarly expressed conditions are allowed to form order equivalent groups and no restriction is placed on the order within a group. Guided by our model, we design and implement a deterministic algorithm, namely OPCTree, to discover OP-Clusters. Experimental study on two real datasets demonstrates the effectiveness of the algorithm in the application of tissue classification and cell cycle identification. In addition, a large percentage of OP-Clusters exhibit significant enrichment of one or more function categories, which implies that OP-Clusters indeed carry significant biological relevance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信