{"title":"海马体旁网络,难治性,和慢性癫痫的点火。","authors":"Dan C McIntyre, Krista L Gilby","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Clearly, the root cause of intractability in epilepsy is currently unknown. Whereas the aforementioned findings may shed light on putative underpinnings, they are by no means an exhaustive list of possibilities. However, new and more effective animal models are continually being created or discovered that take into account genetic predisposition for seizure. At the moment, amygdala kindling appears to be the best choice of the intact animal models. In this vein, the genetically predisposed seizure-prone (Fast kindling) and seizure-resistant (Slow kindling) strains may help speak to many important remaining questions in human epilepsy. Hopefully, these models, to some degree, target correct human subpopulations that are prone or resistant to epilepsy and, when used appropriately, could expedite epilepsy research and future discoveries leading to pharmacoresistance and intractability.</p>","PeriodicalId":7356,"journal":{"name":"Advances in neurology","volume":"97 ","pages":"77-83"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parahippocampal networks, intractability, and the chronic epilepsy of kindling.\",\"authors\":\"Dan C McIntyre, Krista L Gilby\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clearly, the root cause of intractability in epilepsy is currently unknown. Whereas the aforementioned findings may shed light on putative underpinnings, they are by no means an exhaustive list of possibilities. However, new and more effective animal models are continually being created or discovered that take into account genetic predisposition for seizure. At the moment, amygdala kindling appears to be the best choice of the intact animal models. In this vein, the genetically predisposed seizure-prone (Fast kindling) and seizure-resistant (Slow kindling) strains may help speak to many important remaining questions in human epilepsy. Hopefully, these models, to some degree, target correct human subpopulations that are prone or resistant to epilepsy and, when used appropriately, could expedite epilepsy research and future discoveries leading to pharmacoresistance and intractability.</p>\",\"PeriodicalId\":7356,\"journal\":{\"name\":\"Advances in neurology\",\"volume\":\"97 \",\"pages\":\"77-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neurology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parahippocampal networks, intractability, and the chronic epilepsy of kindling.
Clearly, the root cause of intractability in epilepsy is currently unknown. Whereas the aforementioned findings may shed light on putative underpinnings, they are by no means an exhaustive list of possibilities. However, new and more effective animal models are continually being created or discovered that take into account genetic predisposition for seizure. At the moment, amygdala kindling appears to be the best choice of the intact animal models. In this vein, the genetically predisposed seizure-prone (Fast kindling) and seizure-resistant (Slow kindling) strains may help speak to many important remaining questions in human epilepsy. Hopefully, these models, to some degree, target correct human subpopulations that are prone or resistant to epilepsy and, when used appropriately, could expedite epilepsy research and future discoveries leading to pharmacoresistance and intractability.