Phillip Koshute , N. Jordan Jameson , Nathan Hagan , David Lawrence , Adam Lanzarotta
{"title":"从纯化合物拉曼光谱中分类新型芬太尼类似物的机器学习方法","authors":"Phillip Koshute , N. Jordan Jameson , Nathan Hagan , David Lawrence , Adam Lanzarotta","doi":"10.1016/j.forc.2023.100506","DOIUrl":null,"url":null,"abstract":"<div><p>In previous research, we demonstrated the promise of detecting novel fentanyl analogs from mass spectra using machine learning models. This approach complements existing library matching methods and provides a key capability amid the recent sharp increase in abuse of fentanyl and its analogs. However, many applications rely upon portable devices such as Raman spectrometers, rather than mass spectrometers that are generally located in laboratories. In response, we adapted our models to Raman-based sensing, devising a machine learning approach for detecting novel fentanyl analogs from Raman spectra. Whereas mass spectra consist of well-defined discrete peaks, Raman spectra are continuous. To aid model development, we extracted features from each spectrum using smoothing, background subtraction, and principal component analysis (PCA). Additionally, we extracted features related to spectral peaks and similarity to spectra of known compounds; these features were guided by subject-matter expertise. We also used a third feature set that combined the features from PCA and from spectral peaks. With these three feature sets as inputs, we developed fentanyl analog classification models using various machine learning techniques. These techniques included multi-layer perceptron, neural network, partial least squares, penalized multinomial regression, random forest, regularized logistic regression, support vector machines, and extreme gradient boosting. We developed and tested our models using 320 Raman spectra of pure compounds, assessing performance via cross-validation. Models with PCA-based features performed better than those using expert-based features, achieving more than 90% probability of detection alongside less than 1% probability of false alarm. Although fentanyl compounds are often found with other components (e.g., cutting agents), some applications such as mail screening may encounter relatively pure fentanyl analogs. The results within this study suggest that our machine learning models are particularly promising for such applications.</p></div>","PeriodicalId":324,"journal":{"name":"Forensic Chemistry","volume":"34 ","pages":"Article 100506"},"PeriodicalIF":2.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine learning methods for classifying novel fentanyl analogs from Raman spectra of pure compounds\",\"authors\":\"Phillip Koshute , N. Jordan Jameson , Nathan Hagan , David Lawrence , Adam Lanzarotta\",\"doi\":\"10.1016/j.forc.2023.100506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In previous research, we demonstrated the promise of detecting novel fentanyl analogs from mass spectra using machine learning models. This approach complements existing library matching methods and provides a key capability amid the recent sharp increase in abuse of fentanyl and its analogs. However, many applications rely upon portable devices such as Raman spectrometers, rather than mass spectrometers that are generally located in laboratories. In response, we adapted our models to Raman-based sensing, devising a machine learning approach for detecting novel fentanyl analogs from Raman spectra. Whereas mass spectra consist of well-defined discrete peaks, Raman spectra are continuous. To aid model development, we extracted features from each spectrum using smoothing, background subtraction, and principal component analysis (PCA). Additionally, we extracted features related to spectral peaks and similarity to spectra of known compounds; these features were guided by subject-matter expertise. We also used a third feature set that combined the features from PCA and from spectral peaks. With these three feature sets as inputs, we developed fentanyl analog classification models using various machine learning techniques. These techniques included multi-layer perceptron, neural network, partial least squares, penalized multinomial regression, random forest, regularized logistic regression, support vector machines, and extreme gradient boosting. We developed and tested our models using 320 Raman spectra of pure compounds, assessing performance via cross-validation. Models with PCA-based features performed better than those using expert-based features, achieving more than 90% probability of detection alongside less than 1% probability of false alarm. Although fentanyl compounds are often found with other components (e.g., cutting agents), some applications such as mail screening may encounter relatively pure fentanyl analogs. The results within this study suggest that our machine learning models are particularly promising for such applications.</p></div>\",\"PeriodicalId\":324,\"journal\":{\"name\":\"Forensic Chemistry\",\"volume\":\"34 \",\"pages\":\"Article 100506\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468170923000425\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468170923000425","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Machine learning methods for classifying novel fentanyl analogs from Raman spectra of pure compounds
In previous research, we demonstrated the promise of detecting novel fentanyl analogs from mass spectra using machine learning models. This approach complements existing library matching methods and provides a key capability amid the recent sharp increase in abuse of fentanyl and its analogs. However, many applications rely upon portable devices such as Raman spectrometers, rather than mass spectrometers that are generally located in laboratories. In response, we adapted our models to Raman-based sensing, devising a machine learning approach for detecting novel fentanyl analogs from Raman spectra. Whereas mass spectra consist of well-defined discrete peaks, Raman spectra are continuous. To aid model development, we extracted features from each spectrum using smoothing, background subtraction, and principal component analysis (PCA). Additionally, we extracted features related to spectral peaks and similarity to spectra of known compounds; these features were guided by subject-matter expertise. We also used a third feature set that combined the features from PCA and from spectral peaks. With these three feature sets as inputs, we developed fentanyl analog classification models using various machine learning techniques. These techniques included multi-layer perceptron, neural network, partial least squares, penalized multinomial regression, random forest, regularized logistic regression, support vector machines, and extreme gradient boosting. We developed and tested our models using 320 Raman spectra of pure compounds, assessing performance via cross-validation. Models with PCA-based features performed better than those using expert-based features, achieving more than 90% probability of detection alongside less than 1% probability of false alarm. Although fentanyl compounds are often found with other components (e.g., cutting agents), some applications such as mail screening may encounter relatively pure fentanyl analogs. The results within this study suggest that our machine learning models are particularly promising for such applications.
期刊介绍:
Forensic Chemistry publishes high quality manuscripts focusing on the theory, research and application of any chemical science to forensic analysis. The scope of the journal includes fundamental advancements that result in a better understanding of the evidentiary significance derived from the physical and chemical analysis of materials. The scope of Forensic Chemistry will also include the application and or development of any molecular and atomic spectrochemical technique, electrochemical techniques, sensors, surface characterization techniques, mass spectrometry, nuclear magnetic resonance, chemometrics and statistics, and separation sciences (e.g. chromatography) that provide insight into the forensic analysis of materials. Evidential topics of interest to the journal include, but are not limited to, fingerprint analysis, drug analysis, ignitable liquid residue analysis, explosives detection and analysis, the characterization and comparison of trace evidence (glass, fibers, paints and polymers, tapes, soils and other materials), ink and paper analysis, gunshot residue analysis, synthetic pathways for drugs, toxicology and the analysis and chemistry associated with the components of fingermarks. The journal is particularly interested in receiving manuscripts that report advances in the forensic interpretation of chemical evidence. Technology Readiness Level: When submitting an article to Forensic Chemistry, all authors will be asked to self-assign a Technology Readiness Level (TRL) to their article. The purpose of the TRL system is to help readers understand the level of maturity of an idea or method, to help track the evolution of readiness of a given technique or method, and to help filter published articles by the expected ease of implementation in an operation setting within a crime lab.