Joachim A Hering, Peter R Innocent, Parvez I Haris
{"title":"利用FTIR光谱预测蛋白质二级结构含量。","authors":"Joachim A Hering, Peter R Innocent, Parvez I Haris","doi":"10.2165/00822942-200403010-00003","DOIUrl":null,"url":null,"abstract":"<p><p>This paper demonstrates that secondary structure information beyond purely protein secondary structure content can be predicted from FTIR (Fourier transform infrared spectroscopy) spectra of proteins with a high degree of accuracy. Both neural networks and adaptive neuro-fuzzy inference systems (ANFISs) were employed to predict helix/sheet segment information. The best results were achieved using ANFISs with fuzzy subtractive clustering based on normalised, compressed amide I data with an average SEP (standard error of prediction, root mean of squared errors) of 1.51. Predictions for average helix/sheet length based merely on the amide I band maximum position in combination with the full-width at half-height resulted in a comparable average SEP of 1.62. This suggests the importance of information on the position and width of the amide I band maximum for the prediction of helix/sheet segment information. Finally, the most promising pattern recognition approaches found in this study were applied to a protein with an as yet unknown x-ray structure: native a1-antichymotrypsin (a1-ACT).</p>","PeriodicalId":87049,"journal":{"name":"Applied bioinformatics","volume":"3 1","pages":"9-20"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2165/00822942-200403010-00003","citationCount":"4","resultStr":"{\"title\":\"Beyond average protein secondary structure content prediction using FTIR spectroscopy.\",\"authors\":\"Joachim A Hering, Peter R Innocent, Parvez I Haris\",\"doi\":\"10.2165/00822942-200403010-00003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper demonstrates that secondary structure information beyond purely protein secondary structure content can be predicted from FTIR (Fourier transform infrared spectroscopy) spectra of proteins with a high degree of accuracy. Both neural networks and adaptive neuro-fuzzy inference systems (ANFISs) were employed to predict helix/sheet segment information. The best results were achieved using ANFISs with fuzzy subtractive clustering based on normalised, compressed amide I data with an average SEP (standard error of prediction, root mean of squared errors) of 1.51. Predictions for average helix/sheet length based merely on the amide I band maximum position in combination with the full-width at half-height resulted in a comparable average SEP of 1.62. This suggests the importance of information on the position and width of the amide I band maximum for the prediction of helix/sheet segment information. Finally, the most promising pattern recognition approaches found in this study were applied to a protein with an as yet unknown x-ray structure: native a1-antichymotrypsin (a1-ACT).</p>\",\"PeriodicalId\":87049,\"journal\":{\"name\":\"Applied bioinformatics\",\"volume\":\"3 1\",\"pages\":\"9-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2165/00822942-200403010-00003\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2165/00822942-200403010-00003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2165/00822942-200403010-00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Beyond average protein secondary structure content prediction using FTIR spectroscopy.
This paper demonstrates that secondary structure information beyond purely protein secondary structure content can be predicted from FTIR (Fourier transform infrared spectroscopy) spectra of proteins with a high degree of accuracy. Both neural networks and adaptive neuro-fuzzy inference systems (ANFISs) were employed to predict helix/sheet segment information. The best results were achieved using ANFISs with fuzzy subtractive clustering based on normalised, compressed amide I data with an average SEP (standard error of prediction, root mean of squared errors) of 1.51. Predictions for average helix/sheet length based merely on the amide I band maximum position in combination with the full-width at half-height resulted in a comparable average SEP of 1.62. This suggests the importance of information on the position and width of the amide I band maximum for the prediction of helix/sheet segment information. Finally, the most promising pattern recognition approaches found in this study were applied to a protein with an as yet unknown x-ray structure: native a1-antichymotrypsin (a1-ACT).