镧系元素作为抗癌剂。

Irena Kostova
{"title":"镧系元素作为抗癌剂。","authors":"Irena Kostova","doi":"10.2174/156801105774574694","DOIUrl":null,"url":null,"abstract":"<p><p>The application of inorganic chemistry to medicine is a rapidly developing field, and novel therapeutic and diagnostic metals and metal complexes are now having an impact on medical practice. Advances in biocoordination chemistry are crucial for improving the design of compounds to reduce toxic side effects and understand their mechanisms of action. A lot of metal-based drugs are widely used in the treatment of cancer. The clinical success of cisplatin and other platinum complexes is limited by significant side effects acquired or intrinsic resistance. Therefore, much attention has focused on designing new coordination compounds with improved pharmacological properties and a broader range of antitumor activity. Strategies for developing new anticancer agents include the incorporation of carrier groups that can target tumor cells with high specificity. Also of interest is to develop complexes that bind to DNA in a fundamentally different manner than cisplatin, in an attempt to overcome the resistance pathways that have evolved to eliminate the drug. This review focuses on recent advances in developing lanthanide anticancer agents with an emphasis on lanthanide coordination complexes. These complexes may provide a broader spectrum of antitumor activity. They were compared with classical platinum anticancer drugs. Lanthanides are also of interest because of their therapeutic radioisotopes. The dominant pharmacological applications of lanthanides are as agents in radioimmunotherapy and photodynamic therapy.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"5 6","pages":"591-602"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/156801105774574694","citationCount":"88","resultStr":"{\"title\":\"Lanthanides as anticancer agents.\",\"authors\":\"Irena Kostova\",\"doi\":\"10.2174/156801105774574694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of inorganic chemistry to medicine is a rapidly developing field, and novel therapeutic and diagnostic metals and metal complexes are now having an impact on medical practice. Advances in biocoordination chemistry are crucial for improving the design of compounds to reduce toxic side effects and understand their mechanisms of action. A lot of metal-based drugs are widely used in the treatment of cancer. The clinical success of cisplatin and other platinum complexes is limited by significant side effects acquired or intrinsic resistance. Therefore, much attention has focused on designing new coordination compounds with improved pharmacological properties and a broader range of antitumor activity. Strategies for developing new anticancer agents include the incorporation of carrier groups that can target tumor cells with high specificity. Also of interest is to develop complexes that bind to DNA in a fundamentally different manner than cisplatin, in an attempt to overcome the resistance pathways that have evolved to eliminate the drug. This review focuses on recent advances in developing lanthanide anticancer agents with an emphasis on lanthanide coordination complexes. These complexes may provide a broader spectrum of antitumor activity. They were compared with classical platinum anticancer drugs. Lanthanides are also of interest because of their therapeutic radioisotopes. The dominant pharmacological applications of lanthanides are as agents in radioimmunotherapy and photodynamic therapy.</p>\",\"PeriodicalId\":10914,\"journal\":{\"name\":\"Current medicinal chemistry. Anti-cancer agents\",\"volume\":\"5 6\",\"pages\":\"591-602\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2174/156801105774574694\",\"citationCount\":\"88\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry. Anti-cancer agents\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/156801105774574694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry. Anti-cancer agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/156801105774574694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

摘要

无机化学在医学上的应用是一个快速发展的领域,新的治疗和诊断金属和金属配合物正在对医疗实践产生影响。生物配位化学的进步对于改进化合物的设计以减少毒副作用和了解其作用机制至关重要。许多金属基药物被广泛用于癌症的治疗。顺铂和其他铂复合物的临床成功受到获得的显著副作用或内在耐药性的限制。因此,设计具有更好的药理特性和更广泛的抗肿瘤活性的新配位化合物已成为人们关注的焦点。开发新的抗癌药物的策略包括结合具有高特异性的靶向肿瘤细胞的载体群。同样令人感兴趣的是,开发一种与顺铂完全不同的结合DNA的复合物,试图克服已经进化到消除药物的耐药途径。本文综述了近年来镧系抗癌药物的研究进展,重点介绍了镧系配合物的研究进展。这些复合物可能提供更广泛的抗肿瘤活性。将它们与经典的铂类抗癌药物进行比较。镧系元素还因其治疗性放射性同位素而引起人们的兴趣。镧系元素的主要药理应用是作为放射免疫治疗和光动力治疗的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lanthanides as anticancer agents.

The application of inorganic chemistry to medicine is a rapidly developing field, and novel therapeutic and diagnostic metals and metal complexes are now having an impact on medical practice. Advances in biocoordination chemistry are crucial for improving the design of compounds to reduce toxic side effects and understand their mechanisms of action. A lot of metal-based drugs are widely used in the treatment of cancer. The clinical success of cisplatin and other platinum complexes is limited by significant side effects acquired or intrinsic resistance. Therefore, much attention has focused on designing new coordination compounds with improved pharmacological properties and a broader range of antitumor activity. Strategies for developing new anticancer agents include the incorporation of carrier groups that can target tumor cells with high specificity. Also of interest is to develop complexes that bind to DNA in a fundamentally different manner than cisplatin, in an attempt to overcome the resistance pathways that have evolved to eliminate the drug. This review focuses on recent advances in developing lanthanide anticancer agents with an emphasis on lanthanide coordination complexes. These complexes may provide a broader spectrum of antitumor activity. They were compared with classical platinum anticancer drugs. Lanthanides are also of interest because of their therapeutic radioisotopes. The dominant pharmacological applications of lanthanides are as agents in radioimmunotherapy and photodynamic therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信