Christoph Klein , Friedrich Foerster , Klaus Hartnegg , Burkhart Fischer
{"title":"支持和反对扫视的寿命发展:点估计的多元回归模型","authors":"Christoph Klein , Friedrich Foerster , Klaus Hartnegg , Burkhart Fischer","doi":"10.1016/j.devbrainres.2005.06.011","DOIUrl":null,"url":null,"abstract":"<div><p>The comparative study of anti- and pro-saccade task performance contributes to our functional understanding of the frontal lobes, their alterations in psychiatric or neurological populations, and their changes during the life span. In the present study, we apply regression analysis to model life span developmental effects on various pro- and anti-saccade task parameters, using data of a non-representative sample of 327 participants aged 9 to 88 years. Development up to the age of about 27 years was dominated by curvilinear rather than linear effects of age. Furthermore, the largest developmental differences were found for intra-subject variability measures and the anti-saccade task parameters. Ageing, by contrast, had the shape of a global linear decline of the investigated saccade functions, lacking the differential effects of age observed during development. While these results do support the assumption that frontal lobe functions can be distinguished from other functions by their strong and protracted development, they do not confirm the assumption of disproportionate deterioration of frontal lobe functions with ageing. We finally show that the regression models applied here to quantify life span developmental effects can also be used for individual predictions in applied research contexts or clinical practice.</p></div>","PeriodicalId":100369,"journal":{"name":"Developmental Brain Research","volume":"160 2","pages":"Pages 113-123"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.devbrainres.2005.06.011","citationCount":"51","resultStr":"{\"title\":\"Lifespan development of pro- and anti-saccades: Multiple regression models for point estimates\",\"authors\":\"Christoph Klein , Friedrich Foerster , Klaus Hartnegg , Burkhart Fischer\",\"doi\":\"10.1016/j.devbrainres.2005.06.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The comparative study of anti- and pro-saccade task performance contributes to our functional understanding of the frontal lobes, their alterations in psychiatric or neurological populations, and their changes during the life span. In the present study, we apply regression analysis to model life span developmental effects on various pro- and anti-saccade task parameters, using data of a non-representative sample of 327 participants aged 9 to 88 years. Development up to the age of about 27 years was dominated by curvilinear rather than linear effects of age. Furthermore, the largest developmental differences were found for intra-subject variability measures and the anti-saccade task parameters. Ageing, by contrast, had the shape of a global linear decline of the investigated saccade functions, lacking the differential effects of age observed during development. While these results do support the assumption that frontal lobe functions can be distinguished from other functions by their strong and protracted development, they do not confirm the assumption of disproportionate deterioration of frontal lobe functions with ageing. We finally show that the regression models applied here to quantify life span developmental effects can also be used for individual predictions in applied research contexts or clinical practice.</p></div>\",\"PeriodicalId\":100369,\"journal\":{\"name\":\"Developmental Brain Research\",\"volume\":\"160 2\",\"pages\":\"Pages 113-123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.devbrainres.2005.06.011\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Brain Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165380605001823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Brain Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165380605001823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lifespan development of pro- and anti-saccades: Multiple regression models for point estimates
The comparative study of anti- and pro-saccade task performance contributes to our functional understanding of the frontal lobes, their alterations in psychiatric or neurological populations, and their changes during the life span. In the present study, we apply regression analysis to model life span developmental effects on various pro- and anti-saccade task parameters, using data of a non-representative sample of 327 participants aged 9 to 88 years. Development up to the age of about 27 years was dominated by curvilinear rather than linear effects of age. Furthermore, the largest developmental differences were found for intra-subject variability measures and the anti-saccade task parameters. Ageing, by contrast, had the shape of a global linear decline of the investigated saccade functions, lacking the differential effects of age observed during development. While these results do support the assumption that frontal lobe functions can be distinguished from other functions by their strong and protracted development, they do not confirm the assumption of disproportionate deterioration of frontal lobe functions with ageing. We finally show that the regression models applied here to quantify life span developmental effects can also be used for individual predictions in applied research contexts or clinical practice.