{"title":"丝虫的染色体。","authors":"Rory Post","doi":"10.1186/1475-2883-4-10","DOIUrl":null,"url":null,"abstract":"<p><p>An understanding of the nature of the chromosomes of the filariae is expected to greatly assist the future interpretation of genome data. Filarial development is not eutelic, and there does not seem to be a fixed number of cell divisions in the way that there is in Caenorhabditis. It is not clear whether the chromosomes of the filariae have localized centromeres or whether they are holocentric. Sex determination is by a chromosomal \"balance\" X0 system in most filariae, but in some Onchocercidae there has been a chromosomal fusion to create a neo-XY system. It is presumed that the molecular basis of sex determination in filariae is similar to Caenorhabditis. The ancestral karyotype of the filariae is probably 5A+X0, but in some Onchocercidae this has been reduced to 4A+XY, and in O. volvulus and O. gibsoni it has been further reduced to 3A+XY. Onchocerca volvulus and O. gibsoni both have supernumary (B-) chromosomes and in O. volvulus there is a single active nucleolus organising region near the middle of the long autosome.</p>","PeriodicalId":84756,"journal":{"name":"Filaria journal","volume":"4 ","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1475-2883-4-10","citationCount":"25","resultStr":"{\"title\":\"The chromosomes of the Filariae.\",\"authors\":\"Rory Post\",\"doi\":\"10.1186/1475-2883-4-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An understanding of the nature of the chromosomes of the filariae is expected to greatly assist the future interpretation of genome data. Filarial development is not eutelic, and there does not seem to be a fixed number of cell divisions in the way that there is in Caenorhabditis. It is not clear whether the chromosomes of the filariae have localized centromeres or whether they are holocentric. Sex determination is by a chromosomal \\\"balance\\\" X0 system in most filariae, but in some Onchocercidae there has been a chromosomal fusion to create a neo-XY system. It is presumed that the molecular basis of sex determination in filariae is similar to Caenorhabditis. The ancestral karyotype of the filariae is probably 5A+X0, but in some Onchocercidae this has been reduced to 4A+XY, and in O. volvulus and O. gibsoni it has been further reduced to 3A+XY. Onchocerca volvulus and O. gibsoni both have supernumary (B-) chromosomes and in O. volvulus there is a single active nucleolus organising region near the middle of the long autosome.</p>\",\"PeriodicalId\":84756,\"journal\":{\"name\":\"Filaria journal\",\"volume\":\"4 \",\"pages\":\"10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1475-2883-4-10\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Filaria journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1475-2883-4-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Filaria journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1475-2883-4-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An understanding of the nature of the chromosomes of the filariae is expected to greatly assist the future interpretation of genome data. Filarial development is not eutelic, and there does not seem to be a fixed number of cell divisions in the way that there is in Caenorhabditis. It is not clear whether the chromosomes of the filariae have localized centromeres or whether they are holocentric. Sex determination is by a chromosomal "balance" X0 system in most filariae, but in some Onchocercidae there has been a chromosomal fusion to create a neo-XY system. It is presumed that the molecular basis of sex determination in filariae is similar to Caenorhabditis. The ancestral karyotype of the filariae is probably 5A+X0, but in some Onchocercidae this has been reduced to 4A+XY, and in O. volvulus and O. gibsoni it has been further reduced to 3A+XY. Onchocerca volvulus and O. gibsoni both have supernumary (B-) chromosomes and in O. volvulus there is a single active nucleolus organising region near the middle of the long autosome.