Sowmini Oomman , Howard Strahlendorf , VelvetLee Finckbone , Jean Strahlendorf
{"title":"出生后大鼠小脑伯格曼胶质细胞非致死活性caspase-3表达","authors":"Sowmini Oomman , Howard Strahlendorf , VelvetLee Finckbone , Jean Strahlendorf","doi":"10.1016/j.devbrainres.2005.07.010","DOIUrl":null,"url":null,"abstract":"<div><p><span>Caspase-3, an apoptotic executor, has been shown in recent years to mediate non-lethal events like cellular proliferation and differentiation, primarily in studies related to non-neural tissue. In central nervous system development, the role of active caspase-3 is still unclear. We provide the first evidence for a potential new role of active (cleaved) caspase-3 in promoting differentiation of Bergmann glia. This study was predicated on the hypothesis that active caspase-3 is important for the differentiation of glia. We addressed the hypothesis through the following specific aims: (1) to establish the expression of active caspase-3 in glia; (2) to determine the developmental phenotype of the active caspase-3-expressing glia; and (3) to confirm that active caspase-3 expression is not mediating an apoptotic event. Through a temporal investigation from postnatal day 8 to 21, we observed that Bergmann glia express active caspase-3 without compromising their survival. Potential apoptotic fate of active caspase-3-positive Bergmann glia were ruled out based on immunohistochemical exclusion of phosphatidylserine exposure (Annexin V), </span>DNA fragmentation<span> (TUNEL), and DNA compaction (TOPRO-3). More than 90% of the active caspase-3-positive cells lacked colabeling for one of the apoptotic markers. Correlative studies using a proliferation marker Ki67 and a differentiation marker brain lipid-binding protein suggest that the expression of active caspase-3 was mostly associated with differentiating rather than proliferating Bergmann glia at all ages. Thus, this study supports the hypothesis that active caspase-3 may be regulating both differentiation of Bergmann glia by allowing the cells to exit the cell cycle and their morphogenesis.</span></p></div>","PeriodicalId":100369,"journal":{"name":"Developmental Brain Research","volume":"160 2","pages":"Pages 130-145"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.devbrainres.2005.07.010","citationCount":"43","resultStr":"{\"title\":\"Non-lethal active caspase-3 expression in Bergmann glia of postnatal rat cerebellum\",\"authors\":\"Sowmini Oomman , Howard Strahlendorf , VelvetLee Finckbone , Jean Strahlendorf\",\"doi\":\"10.1016/j.devbrainres.2005.07.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Caspase-3, an apoptotic executor, has been shown in recent years to mediate non-lethal events like cellular proliferation and differentiation, primarily in studies related to non-neural tissue. In central nervous system development, the role of active caspase-3 is still unclear. We provide the first evidence for a potential new role of active (cleaved) caspase-3 in promoting differentiation of Bergmann glia. This study was predicated on the hypothesis that active caspase-3 is important for the differentiation of glia. We addressed the hypothesis through the following specific aims: (1) to establish the expression of active caspase-3 in glia; (2) to determine the developmental phenotype of the active caspase-3-expressing glia; and (3) to confirm that active caspase-3 expression is not mediating an apoptotic event. Through a temporal investigation from postnatal day 8 to 21, we observed that Bergmann glia express active caspase-3 without compromising their survival. Potential apoptotic fate of active caspase-3-positive Bergmann glia were ruled out based on immunohistochemical exclusion of phosphatidylserine exposure (Annexin V), </span>DNA fragmentation<span> (TUNEL), and DNA compaction (TOPRO-3). More than 90% of the active caspase-3-positive cells lacked colabeling for one of the apoptotic markers. Correlative studies using a proliferation marker Ki67 and a differentiation marker brain lipid-binding protein suggest that the expression of active caspase-3 was mostly associated with differentiating rather than proliferating Bergmann glia at all ages. Thus, this study supports the hypothesis that active caspase-3 may be regulating both differentiation of Bergmann glia by allowing the cells to exit the cell cycle and their morphogenesis.</span></p></div>\",\"PeriodicalId\":100369,\"journal\":{\"name\":\"Developmental Brain Research\",\"volume\":\"160 2\",\"pages\":\"Pages 130-145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.devbrainres.2005.07.010\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Brain Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165380605002154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Brain Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165380605002154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-lethal active caspase-3 expression in Bergmann glia of postnatal rat cerebellum
Caspase-3, an apoptotic executor, has been shown in recent years to mediate non-lethal events like cellular proliferation and differentiation, primarily in studies related to non-neural tissue. In central nervous system development, the role of active caspase-3 is still unclear. We provide the first evidence for a potential new role of active (cleaved) caspase-3 in promoting differentiation of Bergmann glia. This study was predicated on the hypothesis that active caspase-3 is important for the differentiation of glia. We addressed the hypothesis through the following specific aims: (1) to establish the expression of active caspase-3 in glia; (2) to determine the developmental phenotype of the active caspase-3-expressing glia; and (3) to confirm that active caspase-3 expression is not mediating an apoptotic event. Through a temporal investigation from postnatal day 8 to 21, we observed that Bergmann glia express active caspase-3 without compromising their survival. Potential apoptotic fate of active caspase-3-positive Bergmann glia were ruled out based on immunohistochemical exclusion of phosphatidylserine exposure (Annexin V), DNA fragmentation (TUNEL), and DNA compaction (TOPRO-3). More than 90% of the active caspase-3-positive cells lacked colabeling for one of the apoptotic markers. Correlative studies using a proliferation marker Ki67 and a differentiation marker brain lipid-binding protein suggest that the expression of active caspase-3 was mostly associated with differentiating rather than proliferating Bergmann glia at all ages. Thus, this study supports the hypothesis that active caspase-3 may be regulating both differentiation of Bergmann glia by allowing the cells to exit the cell cycle and their morphogenesis.