{"title":"小麦抗性相关基因瞬时表达系统的功能分析","authors":"Hua-Zhong Wang, Ji-Shan Niu, Pei-Du Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Transient expression system was used to analyze the functions of three resistance- related genes: TaTBL, TaPK1 and TaTST. Target genes were constructed into plant expression vectors and transformed into leaf epidermal cells of a powdery mildew-susceptible wheat variety by gene gun. GUS gene was co-transformed with target gene to mark the transformed cells. After transformation, leaf surface was inoculated with powdery mildew conidiospores. Forty eight hours after inoculation, penetration of the fungus and formation of haustoria in transformed cells were observed to evaluate the effects of the target gene's products on the invasion of powdery mildew. The results implied that all these three genes, when transiently expressed in leaf epidermal cells of susceptible wheat variety, could partly inhibit the penetration of conidiospores and formation of haustoria, and to some extent increase the resistance of cells to powdery mildew.</p>","PeriodicalId":23770,"journal":{"name":"Yi chuan xue bao = Acta genetica Sinica","volume":"32 9","pages":"930-6"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Analysis of the functions of wheat resistance-related genes by a transient expression system].\",\"authors\":\"Hua-Zhong Wang, Ji-Shan Niu, Pei-Du Chen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transient expression system was used to analyze the functions of three resistance- related genes: TaTBL, TaPK1 and TaTST. Target genes were constructed into plant expression vectors and transformed into leaf epidermal cells of a powdery mildew-susceptible wheat variety by gene gun. GUS gene was co-transformed with target gene to mark the transformed cells. After transformation, leaf surface was inoculated with powdery mildew conidiospores. Forty eight hours after inoculation, penetration of the fungus and formation of haustoria in transformed cells were observed to evaluate the effects of the target gene's products on the invasion of powdery mildew. The results implied that all these three genes, when transiently expressed in leaf epidermal cells of susceptible wheat variety, could partly inhibit the penetration of conidiospores and formation of haustoria, and to some extent increase the resistance of cells to powdery mildew.</p>\",\"PeriodicalId\":23770,\"journal\":{\"name\":\"Yi chuan xue bao = Acta genetica Sinica\",\"volume\":\"32 9\",\"pages\":\"930-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yi chuan xue bao = Acta genetica Sinica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yi chuan xue bao = Acta genetica Sinica","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Analysis of the functions of wheat resistance-related genes by a transient expression system].
Transient expression system was used to analyze the functions of three resistance- related genes: TaTBL, TaPK1 and TaTST. Target genes were constructed into plant expression vectors and transformed into leaf epidermal cells of a powdery mildew-susceptible wheat variety by gene gun. GUS gene was co-transformed with target gene to mark the transformed cells. After transformation, leaf surface was inoculated with powdery mildew conidiospores. Forty eight hours after inoculation, penetration of the fungus and formation of haustoria in transformed cells were observed to evaluate the effects of the target gene's products on the invasion of powdery mildew. The results implied that all these three genes, when transiently expressed in leaf epidermal cells of susceptible wheat variety, could partly inhibit the penetration of conidiospores and formation of haustoria, and to some extent increase the resistance of cells to powdery mildew.